
ANITA’S SUPER AWESOME

RECITATION SLIDES
15/18-213: Introduction to Computer Systems

Memory and Caches, 30 Sept 2013

Anita Zhang

UP TO SPEED YET?

 Buflab

 Due tomorrow, 11:59 PM

 Your late days are wasted here

 Cachelab

 Out tomorrow, 11:59 PM

 Due Thursday, October 10, 2013, 11:59 PM

 Labs will be going back to regular Thursday due date

THIS AND THAT AND WHAT’S TODAY

 Exam Talk

 Alignment

 Memory Organization

 Cachelab Part A

 Data Lab Style Masking

 Helpful Functions

IMPENDING DOOM

 Midterm: Wed, 16 Oct – Sat, 19 Oct 2013

 In 2 weeks!!

 The #1 best way to prepare: do previous exams.

 Do enough midterms until you feel comfortable with

the material (at least 5 recent ones).

 Depending on the semester, caches can be found in Exam 2

MOTIVATION: WHY BOTHER WITH THE ECES?

STRUCTS, WHAT ARE THEY?

 An object with sets of (related) values that can be

passed around together

 Values not necessarily contiguous in memory

 But they are considered “next to each other”

 Alignment padding throws off contiguousness

 Each object may have a different alignment rule

 Constant offset from the beginning of the struct

ALIGNMENT OF STRUCTS

 Entire struct aligns according to the largest

alignment constraint of its member.

 Enforced by the compiler.

 Different compilers have different alignment rules!

 Luckily we only use GCC in this class.

 Overall structure length a multiple of K.

 K  largest alignment requirement of an element.

 Optimize length by declaring largest elements first.

EXAMPLE OF A STRUCT (FROM LECTURE)

struct S1 {
char c;
int i[2];
double v;

} *sp;

c 3 bytes i[0] i[1] 4 bytes v

sp+0 sp+4 sp+8 sp+16 sp+24

WHAT ARE UNIONS?

 A place in memory used to store data types

 Unlike structs, union elements are not placed

“next to each other in memory”

 Rather they are placed “on top”

 Size is decided by the largest element

 Only one field used at a time

 Each write overwrites some part of another

 This class does not deal with unions very much

 If think you want unions... You probably want structs

UNION EXAMPLE (FROM LECTURE)

union U1 {
char c;
int i[2];
double v;

} *up;

c

i[0] i[1]

v

up+0 up+4 up+8

STRUCTS ON EXAMS

struct stats {
int num_views;
short sum;

};

Goal: Align struct
system_f according to a

64-bit Linux system

0 1 2 3 4 5 6 7 8 9 a b c d e f

a X X X X X X X b b b b b b b b

c c c c c c c c c c c c X X X X

d d d d d d d d e e e e e e X X

f f X X X X X X

struct system_f {
char a;
int* b;
int c[3];
long d;
struct stats e;
short f;

};

MEMORY HIERARCHY (FROM LECTURE)

Registers

L1 cache
(SRAM)

Main
memory
(DRAM)

Local secondary
storage

(local disks)

Larger,
slower,
cheaper
per byte

Remote secondary storage
(tapes, distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk blocks
retrieved from local disks

L2 cache
(SRAM)

L1 cache holds cache lines retrieved from
L2 cache

CPU registers hold words retrieved from L1
cache

L2 cache holds cache lines retrieved
from main memory

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
costlier
per byte

SRAM VS DRAM

 SRAM

 Faster (L1 Cache: 1 CPU cycle)

 Smaller (L1 in kilobytes; L2 in megabytes)

 More expensive and “energy-hungry”

 DRAM (Main memory)

 Relatively slower (hundreds of CPU cycles)

 Larger (Gigabytes)

 Cheaper

ADDRESS DIVISION IN CACHES

 On the Shark machines, addresses are 64-bits

 Dividing a memory address

 Block offset: b bits

 Set index: s bits

 Tag bits: address size – b – s

CACHE PARAMETERS

 A cache is a set of S = 2s cache sets

 A cache set is a set of E cache lines

 E is called associativity

 If E = 1, the cache is “direct-mapped”

 Each cache line stores a block

 Each block has B = 2b bytes

 Total capacity C = S * B * E

CACHE LOOKUP STEPS

 Divide address into parts

 Block offset: Low b bits

 Set number: Next s bits

 Tag: Remaining ((address size) – b – s) bits

 Check each line in a set, compare tags

 If one matches and it’s valid, it’s a hit!

 If none match, it’s a miss. Add block to cache

 If there’s no room, evict a line from the set

CACHE LAB PART A

 Cache Simulator

 Implement for variable s, b, and E values

 Values read in from a trace file (at runtime)

 Least Recently Used (LRU) Policy

 Cache Simulator != Cache

 This simulator does NOT store memory contents

 Only performs lookups/ evictions for various addresses

 We do NOT care about block offsets here

 Goal: count the number of hits, misses, and evictions

 Read addresses from files and return these numbers

PULLING OUT CACHE PARAMETERS

 Remember how to use masks from Data Lab?

 Example address: AABBCCDD

 8 block offset bits (b):

 0xAABBCCDD & 0xFF = DD

 8 set bits (s):

 (0xAABBCCDD >> b) & 0xFF = CC

 Remaining tag bits:

 (0xAABBCCDD >> (b + s)) & 0xFFFF = AABB

GENERAL SIMULATOR DESIGN HINTS

 A cache is just 2D array of cache lines:

 struct cache_line cache[S][E];

 S = 2s is the number of sets

 E is associativity

 Each cache_line has:

 Valid bit

 Tag

 LRU “counter”

ANITA’S FAVORITE DATA STRUCTURE

 Linked lists

 “The only data structure you will ever need”

 (Heavily) used in cache and malloc lab

 A lesson on linked list in the credits page

FOOD FOR THOUGHT/ OTHER DESIGNS

 How necessary is the LRU counter?

 We have the power to insert nodes wherever we want

 So why use a counter?

 As a C programmer, implementing a linked list

should be second nature

 The same deal every time

 Pointers to each node

 Traversal helper functions

 Checking invariants

FUNCTION 1: GETOPT

 getopt automates parsing elements on the unix

command line

 Typically called in a loop to retrieve arguments

 Use a switch statement to handle options

 Returns -1 when there are no more arguments

 Must include the 2 header files:

 unistd.h

 getopt.h

FUNCTION 1: GETOPT USAGE

 Switch statement used on the (local) variable

holding the return value from getopt

 getopt does not check number of arguments

 Each command line input can be handled separately

 Colon in specifier means required argument

 optarg – Points to the value of the option argument

 This is set by the getopt function

 Food for thought

 How do we handle invalid inputs?

FUNCTION 1: GETOPT EXAMPLE

 Suppose we had an executable called “foo”

 Example call from shell: unix> ./foo –x 1

 Next slide: Parsing the argument to the x option

 Notice: We passed in an int which is read as a char *

 We use atoi to convert the string to an int

FUNCTION 1: GETOPT EXAMPLE CONT.

int main(int argc, char** argv){
int opt, x;

/* looping over arguments */
while(-1 != (opt = getopt(argc, argv, “x:"))){

/* determine which argument it’s processing */
switch(opt) {

case 'x':
x = atoi(optarg);
break;

default:
printf(“wrong argument\n");
break;

}
}

}

FUNCTION 2: FSCANF

 The fscanf function is just like scanf/sscanf

 But it can specify a stream to read from

 scanf always reads from stdin

 sscanf reads from a string

 Parameters:

 File pointer

 Format string with information on how to read file

 Variable number of pointers to with locations for

storing data from file

 Typically use in a loop until it hits the end of file

 fscanf is useful in reading from the trace files

FUNCTION 2: FSCANF EXAMPLE

FILE *pFile; // pointer to FILE object

/* open file for reading */
pFile = fopen ("myfile.txt", “r");

int x, y;
char c;

/* read two ints and a char from file */
while(fscanf(pFile, “%d %d %c”, &x, &y, &c) > 0){

// Do stuff
}

fclose(pFile); // remember to close file when done

VARIATION USING FGETS/SSCANF

FILE *pFile = fopen ("myfile.txt", “r");

if(!pFile){ /* NULL check */

printf("%s: %s\n", pFile, strerror(errno));

exit(1);

}

int x, y;

char buf[1000];

while(fgets(buf, 1000, pFile) != NULL) {

sscanf(buf, "%x %x", &x, &y);

// Do stuff

}

fclose(pFile);

STYLE AND TIPS FOR LIFE

 Check for failures and errors ALWAYS

 Functions don’t always succeed

 What happens when a system call fails?

 Common cases of failure:

 Not checking the return of malloc

 Not handling invalid inputs

 Generally, not checking returns of functions

I STOLE FROM THESE PLACES

 Upside down CPU Cache

Pyramid

 Wikipedia: Linked Lists

 C Linked List Example

 getopt from GNU

 fscanf from CPlusPlus.com

http://www.1024cores.net/_/rsrc/1296469855892/home/parallel-computing/cache-oblivious-algorithms/cpu_cache_structure.png
http://www.1024cores.net/_/rsrc/1296469855892/home/parallel-computing/cache-oblivious-algorithms/cpu_cache_structure.png
http://en.wikipedia.org/wiki/Linked_list
http://www.thegeekstuff.com/2012/08/c-linked-list-example/
http://www.gnu.org/software/libc/manual/html_node/Getopt.html
http://www.gnu.org/software/libc/manual/html_node/Getopt.html
http://www.cplusplus.com/reference/cstdio/fscanf/
http://www.cplusplus.com/reference/cstdio/fscanf/

