. ANITA’S SUPER AWESOME
® RECITATION SLIDES
‘ 15/18-213: Introduction to Computer Systems

@ Memory and Caches, 30 Sept 2013
@® AnitaZhang

UP TO SPEED YET?

Buflab

Due tomorrow, 11:59 PM

Your late days are wasted here
Cachelab

Out tomorrow, 11:59 PM

Due Thursday, October 10, 2013, 11:59 PM
Labs will be going back to regular Thursday due date

THIS AND THAT AND WHAT’S TODAY

Exam Talk
Alignment
Memory Organization

Cachelab Part A
Data Lab Style Masking
Helpful Functions

IMPENDING DOOM

Midterm: Wed, 16 Oct — Sat, 19 Oct 2013

In 2 weeks!!

The #1 best way to prepare: do previous exams.

Do enough midterms until you feel comfortable with
the material (at least 5 recent ones).
Depending on the semester, caches can be found in Exam 2

MOTIVATION: WHY BOTHER WITH THE ECES?

Capacity
Latency

STRUCTS, WHAT ARE THEY?

An object with sets of (related) values that can be
passed around together

Values not necessarily contiguous in memory
But they are considered “next to each other”

o Alignment padding throws off contiguousness
Each object may have a different alignment rule
Constant offset from the beginning of the struct

ALIGNMENT OF STRUCTS

Entire struct aligns according to the largest
alignment constraint of its member.

Enforced by the compiler.
Different compilers have different alignment rules!
Luckily we only use GCC in this class.

Overall structure length a multiple of K.
K - largest alignment requirement of an element.
Optimize length by declaring largest elements first.

EXAMPLE OF A STRUCT (FROM LECTURE)

struct S1 {
char c;
int 1[2];
double v;
} *sp;

i[0]

i[1]

sp+0

spt4

sp+8

sp+16

sp+24

WHAT ARE UNIONS?

A place in memory used to store data types

Unlike structs, union elements are not placed
“next to each other in memory”

Rather they are placed “on top”
Size 1s decided by the largest element
Only one field used at a time

Each write overwrites some part of another

This class does not deal with unions very much
If think you want unions... You probably want structs

UNION EXAMPLE (FROM LECTURE)

union Ul {
char c;
int 1[2];
double v;
} *up;

i[0] i[1]

up+0 up+4 up+8

STRUCTS ON EXAMS

struct stats { struct system_f {
int num_views; char a;
short sum; int* b;
}; int c[3];
Tong d;
Goal: Align struct struct stats e;
system_f according to a short f;
64-bit Linux system };

a X X X X X X X b b b b b b b
X

c ¢ ¢ ¢ X X X
e e e e e e X

- o, O
o, O
S -VEE
< e o
M e o
S VEE
< e o
S VEE

MEMORY HIERARCHY (FROM LECTURE)

A

Smaller,
faster,
costlier
per byte

Larger,
slower,
cheaper
per byte

L5:

L4:

L3:

L2:

L1:

LO:

CPU registers hold words retrieved from L1
cache

Registers

L1 cache holds cache lines retrieved from
L1 cache L2 cache
(SRAM)

L2 cache L2 cache holds cache lines retrieved
(SRAM) from main memory

Main Main memory holds disk blocks
memory retrieved from local disks
(DRAM)

Local secondary

Local disks hold files
retrieved from disks on
remote network servers

storage

(local disks)

Remote secondary storage
(tapes, distributed file systems, Web servers)

SRAM vsS DRAM

SRAM
Faster (L1 Cache: 1 CPU cycle)
Smaller (L1 1in kilobytes; L2 in megabytes)
More expensive and “energy-hungry”

DRAM (Main memory)
Relatively slower (hundreds of CPU cycles)
Larger (Gigabytes)
Cheaper

ADDRESS DIVISION IN CACHES

On the Shark machines, addresses are 64-bits

Dividing a memory address

Block offset: b bits
Set index: s bits
Tag bits: address size — b — s

memory address

tag set index block offset

CACHE PARAMETERS

A cache 1s a set of S = 2% cache sets

A cache set is a set of E cache lines
E 1s called associativity
If E =1, the cache 1s “direct-mapped”

Each cache line stores a block
Each block has B = 2P bytes

Total capacity C=S* B * E

CACHE LOOKUP STEPS

Divide address into parts

Block offset: Low b bits

Set number: Next s bits

Tag: Remaining ((address size) — b — s) bits
Check each line in a set, compare tags

If one matches and 1t’s valid, it’s a hit!

If none match, 1t’s a miss. Add block to cache

o If there’s no room, evict a line from the set

CACHE LAB PART A

Cache Simulator
Implement for variable s, b, and E values

o Values read in from a trace file (at runtime)

Least Recently Used (LRU) Policy

Cache Simulator != Cache
This simulator does NOT store memory contents

o Only performs lookups/ evictions for various addresses
We do NOT care about block offsets here
Goal: count the number of hits, misses, and evictions

o Read addresses from files and return these numbers

PULLING OUT CACHE PARAMETERS

Remember how to use masks from Data Lab?

Example address: AABBCCDD

8 block offset bits (b):

o 0xXAABBCCDD & 0xFF = DD
8 set bits (s):

o (0xAABBCCDD >>b) & 0xFF = CC
Remaining tag bits:

o (0xAABBCCDD >> (b + s)) & 0xFFFF = AABB

GENERAL SIMULATOR DESIGN HINTS

A cache 1s just 2D array of cache lines:
struct cache_line cache[S][E];

S = 2% 1s the number of sets
E 1s associativity

Each cache_11ine has:
Valid bit
Tag
LRU “counter”

ANITA’S FAVORITE DATA STRUCTURE

Linked lists

“The only data structure you will ever need”

(Heavily) used in cache and malloc lab

A lesson on linked list in the credits page

newNode

37

>12] o>

99

.._

_>

node

node.next

newNode

37

|

)

12| ¢

node

99

o—

_>

node.next

FoOoD FOR THOUGHT/ OTHER DESIGNS

How necessary is the LRU counter?
We have the power to insert nodes wherever we want

o So why use a counter?

As a C programmer, implementing a linked list
should be second nature

The same deal every time

o Pointers to each node

o Traversal helper functions
o Checking invariants

FUNCTION 1: GETOPT

getopt automates parsing elements on the unix
command line

Typically called in a loop to retrieve arguments

Use a switch statement to handle options

Returns -1 when there are no more arguments

Must include the 2 header files:
unistd.h

getopt.h

FUNCTION 1: GETOPT USAGE

Switch statement used on the (local) variable
holding the return value from getopt

getopt does not check number of arguments

Each command line input can be handled separately

o Colon 1n specifier means required argument

optarg — Points to the value of the option argument
o This 1s set by the getopt function

Food for thought

How do we handle invalid inputs?

FUNCTION 1: GETOPT EXAMPLE

Suppose we had an executable called “foo”
Example call from shell: unix> ./foo -x 1

Next slide: Parsing the argument to the x option

Notice: We passed in an int which i1s read as a char *
We use atoi to convert the string to an int

FUNCTION 1: GETOPT EXAMPLE CONT.

int main(int argc, char** argv){
int opt, X;

/* looping over arguments */
while(-1 !'= (opt = getopt(argc, argv, “x:"))){
/* determine which argument it’s processing */
switch(opt) {
case 'x':
X = atoi(optarg);
break;
default:
printf(“wrong argument\n");

break;

FUNCTION 2: FSCANF

The fscanf function is just like scanf/sscanf
But 1t can specify a stream to read from
scanf always reads from stdin
sscanf reads from a string

Parameters:
File pointer
Format string with information on how to read file

Variable number of pointers to with locations for
storing data from file

Typically use in a loop until it hits the end of file

fscanf 1s useful in reading from the trace files

FUNCTION 2: FSCANF KXAMPLE

FILE *pFile; // pointer to FILE object

/* open file for reading */
pFile = fopen ("myfile.txt", “r");

int X, Yy;
char c;

/* read two ints and a char from file */

while(fscanf(pFile, “%d %d %c”, &x, &y, &c) > 0){
// Do stuff

}

fclose(pFile); // remember to close file when done

VARIATION USING FGETS/SSCANF
FILE *pFile = fopen ("myfile.txt", “r");

1if(!pFile){ /* NULL check */
printf("%s: %s\n", pFile, strerror(errno));
ex1t(l);

}

int x, Yy;
char buf[1000];

while(fgets(buf, 1000, pFile) != NuLL) {
sscanf(buf, "%x %x", &x, &y);
// Do stuff

}

fclose(pFile);

STYLE AND TIPS FOR LIFE
Check for failures and errors ALWAYS

Functions don’t always succeed
What happens when a system call fails?

Common cases of failure:
Not checking the return of malloc
Not handling invalid inputs
Generally, not checking returns of functions

I STOLE FROM THESE PLACES

o Upside down CPU Cache
Pyramid

Wikipedia: Linked Lists
C Linked List Example
ogetopt from GNU

fscanf from CPlusPlus.com

http://www.1024cores.net/_/rsrc/1296469855892/home/parallel-computing/cache-oblivious-algorithms/cpu_cache_structure.png
http://www.1024cores.net/_/rsrc/1296469855892/home/parallel-computing/cache-oblivious-algorithms/cpu_cache_structure.png
http://en.wikipedia.org/wiki/Linked_list
http://www.thegeekstuff.com/2012/08/c-linked-list-example/
http://www.gnu.org/software/libc/manual/html_node/Getopt.html
http://www.gnu.org/software/libc/manual/html_node/Getopt.html
http://www.cplusplus.com/reference/cstdio/fscanf/
http://www.cplusplus.com/reference/cstdio/fscanf/

