
ANITA’S SUPER AWESOME

RECITATION SLIDES

15/18-213: Introduction to Computer Systems

Stacks and Buflab, 23 Sept 2013

Anita Zhang

WHAT’S NEW (OR NOT)

 Bomb Lab is due Tuesday (tomorrow), 11:59 PM

 Your late days are wasted here

 Student: “But if you wait until the last minute, then

it only takes a minute!”

 Not (quite) true

 Buf Lab out Tuesday (tomorrow), 11:59 PM

 Hacking the stack

 Stacks will be on the exams

 They’re tough at first, but I believe in you 

SPEAKING OF THE EXAM…

 Midterm: Wed, 16 Oct – Sat, 19 Oct 2013

 Covers everything up to, and including, caches.

 Chapters 1-3 and 6 of textbook.

 Up to and including Cache Lab.

 Lectures up to and including Caches (1 Oct 2013).

 Recitation exam review the week of exam.

 “Read each chapter 3 times, work the practice

problems, and do previous exams.”

 Do enough midterms until you feel comfortable with

the material (at least 5 recent ones).

 Depending on the semester, caches can be found in Exam 2.

TO THOSE WHO WANT A COOL SHELL

 http://www.contrib.andrew.cmu.edu/~anitazha/15213_tips.html

 Scroll down to the part about “Shell of Choice”

 Follow the directions

 Your terminal will look something like this:

http://www.contrib.andrew.cmu.edu/~anitazha/15213_tips.html

JOURNEY THROUGH TIME

 Basic Assembly Review

 Jump Tables vs. Sparse Switch

 Terminology

 Stacks

 IA32 Stack Discipline

 Function Call Overview

 Stack Walkthrough

 Extras on x86(_64) stacks

 Buf Lab Quick Start

 Essential Items of Business

 Miscellany

 Demo…?

ASSEMBLY COVERAGE: JUMP TABLES

 Jump tables

 Think of it as an array of addresses in memory

 Use jump instructions to execute from these addresses

 Using assembly it is possible to index into the array

 Each entry of will hold addresses of instructions

JUMP TABLE EXAMPLE

 The tip-off is something like this:
 jmpq *0x400600(,%rax,8)

 Empty base means implied 0

 %rax is the “index”

 8 is the “scale” (64-bit machine addresses are 8 bytes)

 * indicates a dereference (like in C notation)

 Like leal: does not do a dereference with parenthesis

 Put it all together: “Jump to the address stored in the
address 0x400600 + %rax*8”

 Using GDB (example output): x/8g 0x400600
0x400600: 0x00000000004004d1 0x00000000004004c8

0x400610: 0x00000000004004c8 0x00000000004004be

0x400620: 0x00000000004004c1 0x00000000004004d7

0x400630: 0x00000000004004c8 0x00000000004004be

ASSEMBLY COVERAGE: SPARSE SWITCH

 Sparse switch vs. jump tables

 Jump tables work if every entry has a jump location

 Sparse switches cover cases where there are less

densely packed cases

 Does not make sense to allocate space for 100 entries if only

1 and 100 are used as cases

 In the following example: uses labels to go to the next

instruction

SPARSE SWITCH EXAMPLE

movl 8(%ebp),%eax # get x

cmpl $444,%eax # x:444

je L8

jg L16

cmpl $111,%eax # x:111

je L5

jg L17

testl %eax,%eax # x:0

je L4

jmp L14

int div111(int x) {

switch(x) {

case 0: return 0;

case 111: return 1;

case 222: return 2;

case 333: return 3;

case 444: return 4;

case 555: return 5;

case 666: return 6;

case 777: return 7;

case 888: return 8;

case 999: return 9;

default: return -1;

}

}

. . .
L5:

movl $1,%eax
jmp L19

L6:
movl $2,%eax
jmp L19

L7:
movl $3,%eax
jmp L19

L8:
movl $4,%eax
jmp L19
. . .

SOME KIND OF STACK MOTIVATION

“In order to support general recursion, a language needs a way to

allocate different activation records for different invocations of the

same function. That way, local variables allocated in one recursive call

can coexist with local variables allocated in a different call.” (credits to

stack overflow)

DEFINITIONS AND CONVENTIONS

 Register

 Some place in hardware that stores bits

 Like boxes on the side of memory

 Caller save

 Saved by the caller of a function

 Before a function call, the caller must save any caller

save register values it wants preserved

 Callee save

 Saved by the callee of a function

 The callee is required to save/ restore values in these

registers if it is using these registers in the function

ASIDE: WHY BOTH?

 Why do we have both caller and callee save?

 Performance

 Not all registers need to be saved

IA32 REGISTERS

 6 general purpose registers

 Caller save
 %eax, %ecx, %edx

 Saved by the caller of a function

 Callee save
 %ebx, %edi, %esi

 Saved by the callee of a function

SPECIAL IA32 REGISTERS

 Base Pointer

 %ebp

 Points to the “bottom” of the stack frame

 The location of old %ebp that gets pushed on entry

 Stack Pointer

 %esp

 Points to the “top” of the stack

 Usually whatever was last pushed on the stack

 Instruction Pointer (Program Counter)

 %eip

 Points to the next instruction to be executed

IA32 TERMINOLOGY

Direction of

stack

growth

%esp
“top”

“bottom”Higher addresses

(ie. 0xFFFFFFFF)

Lower addresses

(ie. 0x00000000)

ASIDE: TECHNOLOGY NOTE (AGAIN!)

 This class is (strictly) x86(_64)

 Other architectures may have different conventions

 May not use stacks at all (weird, I know)

 Stacks grow down/ up depending on implementation

 Very confusing to those new to stacks

ASIDE: DIRECTION OF GROWTH

 Stack direction REALLY doesn’t matter

 Direction of growth is dependent on the processor

 May be selectable for up/down

 …Or some other direction…?

BAM! CIRCULAR STACK!

SPARC (scalable processor architecture) Architecture

ASIDE: DIRECTION OF GROWTH

 Examples from StackOverflow

 x86 - down

 SPARC - in a circle

 System z - in a linked list (down, at least for zLinux)

 ARM - selectable

 PDP11 - down

WHAT HAPPENS IN IA32: PUSH

 Pushing on the stack

 In general, pushl translates to (in AT&T syntax):
 subl $0x4, %esp
movl src, (%esp)

pushl %eax

%esp

%esp

0x15 0x15

0x213

“bottom” “bottom”

WHAT HAPPENS IN IA32: POP

 Popping off the stack

 In general, popl translates to (in AT&T syntax):
 movl (%esp), dest
addl $0x4, %esp

popl %eax

%esp 

%esp  0x1000x100

0x213

“bottom”“bottom”

STACK FRAMES WHATCHAMACALLITS?

 Every function call gets a “stack frame”

 All the useful stuff can go on the stack!

 Local variables (scalars, arrays, structs)

 What the compiler couldn’t fit into registers

 Callee/caller save registers

 Temporary variables

 Arguments

 Stacks can make recursion work!

 Key idea: “Storage for each instance of procedure

call” (stolen out of 15-410 slides)

SO THAT’S WHAT IT LOOKS LIKE…

… Earlier Frames

…

Caller’s frame

Argument n

…

Argument 1

Return Address

Frame Pointer
%ebp

Saved (old) %ebp

Current (callee) frame

Saved registers, local

variables, and

temporaries

Stack Pointer

%esp

Argument build area

Increasing

Addresses

ROLES OF A (FUNCTION) CALLER

 Caller

 Save (push) relevant caller save registers

 Push arguments

 Call function

 Caller after function return

 “Remove” (add to %esp or pop) arguments

 Restore (pop) saved caller save registers

ROLES OF A (FUNCTION) CALLEE

 Callee

 Push %ebp (save stack frame)

 Copy (move) %esp into %ebp

 Save (push) callee save registers it wants to use

 Callee before return

 Restore (pop) callee save registers previously saved

 Copy (move) %ebp into %esp

 Moves stack pointer to the saved %ebp

 Restore (pop) %ebp

FUNCTION CALLS, OTHER OPERATIONS

 Implied operations

 “call” implicitly pushes return address

 Return address is always of the instruction after the call

 “ret” implicitly pops return address into %eip

 Becomes the next instruction to execute!

STACK FRAMES IN ACTION

C Code Disassembly

int main() {

return addition(5, 6);

}

int addition(int x, int y) {

return x+y;

}

08048394 <main>:

8048394: 55 push %ebp

8048395: 89 e5 mov %esp,%ebp

8048397: 83 e4 f0 and $0xfffffff0,%esp

804839a: 83 ec 10 sub $0x10,%esp

804839d: c7 44 24 04 06 00 00 movl $0x6,0x4(%esp)

80483a4: 00

80483a5: c7 04 24 05 00 00 00 movl $0x5,(%esp)

80483ac: e8 02 00 00 00 call 80483b3 <addition>

80483b1: c9 leave

80483b2: c3 ret

080483b3 <addition>:

80483b3: 55 push %ebp

80483b4: 89 e5 mov %esp,%ebp

80483b6: 8b 45 0c mov 0xc(%ebp),%eax

80483b9: 8b 55 08 mov 0x8(%ebp),%edx

80483bc: 8d 04 02 lea (%edx,%eax,1),%eax

80483bf: c9 leave

80483c0: c3 ret

BREAKDOWN: ARGUMENT BUILD

 Build the arguments (note: 2 instructions are executed in this example)

Before After

%esp = 0x104
%ebp = 0x200
%eip = 0x804839d

%esp = 0x104
%ebp = 0x200
%eip = 0x80483ac

0x108

0x104

0x100

0xFC

main():

movl $0x6,0x4(%esp)

movl $0x5,(%esp)%esp %esp

0x6
(argument 2)

0x5
(argument 1)

BREAKDOWN: FUNCTION CALL

 Call the function

Before After

%esp = 0x104
%ebp = 0x200
%eip = 0x80483ac

%esp = 0x100
%ebp = 0x200
%eip = 0x80483b3

0x108

0x104

0x100

0xFC

main():

call 80483b3 <addition>%esp

%esp

0x6
(argument 2)

0x5
(argument 1)

0x6
(argument 2)

0x5
(argument 1)

0x80483b1
(return address)

BREAKDOWN: CALLEE SETUP

 Stack frame set up (note: 2 instructions are executed in this example)

Before After

%esp = 0x100
%ebp = 0x200
%eip = 0x80483b3

%esp = 0xFC
%ebp = 0xFC
%eip = 0x80483b6

0x108

0x104

0x100

0xFC

%esp

0x6
(argument 2)

0x5
(argument 1)

%esp

0x6
(argument 2)

0x5
(argument 1)

0x80483b1
(return address)

0x200
(Prev. %ebp)

addition():

push %ebp

mov %esp,%ebp

0x80483b1
(return address)

BREAK FROM THE EXAMPLE.. KIND OF

 Accessing an argument

 In the current frame, arguments are accessed via

references to %ebp
 Notice how argument 1 is at 0x8(%ebp), not 0x4(%ebp)

0x108

0x104

Argument Location

Argument 2 0xC(%ebp)

Argument 1 0x8(%ebp)

0x100

0x6
(argument 2)

0x5
(argument 1)

0x80483b1
(return address)

0x200
(Prev. %ebp)

0xFC

LET’S REVIEW THE CODE AGAIN

C Code Disassembly

int main() {

return addition(5, 6);

}

int addition(int x, int y)

{

return x+y;

}

08048394 <main>:

8048394: 55 push %ebp

8048395: 89 e5 mov %esp,%ebp

8048397: 83 e4 f0 and $0xfffffff0,%esp

804839a: 83 ec 10 sub $0x10,%esp

804839d: c7 44 24 04 06 00 00 movl $0x6,0x4(%esp)

80483a4: 00

80483a5: c7 04 24 05 00 00 00 movl $0x5,(%esp)

80483ac: e8 02 00 00 00 call 80483b3 <addition>

80483b1: c9 leave

80483b2: c3 ret

080483b3 <addition>:

80483b3: 55 push %ebp

80483b4: 89 e5 mov %esp,%ebp

80483b6: 8b 45 0c mov 0xc(%ebp),%eax

80483b9: 8b 55 08 mov 0x8(%ebp),%edx

80483bc: 8d 04 02 lea (%edx,%eax,1),%eax

80483bf: c9 leave

80483c0: c3 ret

BREAKDOWN: PREPARING TO RETURN

 Preparing to return from a function

Before After

%esp = 0xFC
%ebp = 0xFC
%eip = 0x80483bf

%esp = 0x100
%ebp = 0x200
%eip = 0x80483c0

0x108

0x104

0x100

0xFC%esp

0x6
(argument 2)

0x5
(argument 1)

%esp

0x6
(argument 2)

0x5
(argument 1)

0x80483b1
(return address)

addition():

leave

0x80483b1
(return address)

0x200
(Prev. %ebp)

(equivalent to:

movl %ebp, %esp

pop %ebp)

BREAKDOWN: RETURN

 Return from a function

Before After

%esp = 0xFC
%ebp = 0x200
%eip = 0x80483c0

%esp = 0x104
%ebp = 0x200
%eip = 0x80483b1

0x108

0x104

0x100

0xFC

%esp

0x6
(argument 2)

0x5
(argument 1)

%esp

0x6
(argument 2)

0x5
(argument 1)

addition():

ret

0x80483b1
(return address)

(equivalent to:

popl %eip)

STACKS AND STUFF ON X86_64

 Arguments (≤ 6) are passed via registers
 %rdi, %rsi, %rdx, %rcx, %r8, %r9

 Extra arguments passed via stack!

 IA32 stack knowledge still matters!

 Don’t need %ebp as the base pointer

 Compilers are smarter now

 Overall less stack use

 Potentially better performance

AND FLOATING POINT?

 Floating point arguments are complicated

 Out of the scope of this course

 Some chips have a separate floating point stack

 Example of complication

 x86_64 stack on function entry needs to be 16 byte

aligned for floating point

 And other potential issues you shouldn’t worry about

BUFLAB

 A series of exercises asking you to overflow the

stack and change execution

 You do this with inputs that are super long and write

over key stack values

 Incorrect inputs will not hurt your score

 Seminal paper on stack corruption

 Smashing the Stack for Fun and Profit

http://insecure.org/stf/smashstack.html

BASIC APPROACH

 Examine the provided C code/ disassembly

 Disassembling

 > objdump -d bufbomb > outfile

 Don’t forget that GDB is still used for this lab!

 Find out how long to make your inputs

 Write exploits to divert program execution

 Profit

BUFLAB TOOLS

 ./makecookie andrewID

 Makes a unique “cookie” based on your Andrew ID

 ./hex2raw

 Use the hex generated from assembly to pass raw strings into

bufbomb

 Use with –n in the last stage

 ./bufbomb -t andrewID

 The actual program to attack

 Always pass in with your Andrew ID so your score is logged

 Use with –n in the last stage

HOW TO INPUT ANSWERS

 Put your byte code exploit into a text file

 Then feed it through hex2raw

 Later stages: write (corruption) assembly

 Compiling

 > gcc -m32 -c example.S

 Get the byte codes

 > objdump -d example.o > outfile

 Then feed it through hex2raw

WAYS TO FEED BYTE CODES

 Option 1: Pipes
 > cat exploitfile | ./hex2raw | ./bufbomb -t andrewID

 Option 2: Redirects
 > ./hex2raw < exploitfile > exploit-rawfile

 > ./bufbomb -t andrewID < exploit-rawfile

 Option 3: Redirects in GDB
 > gdb bufbomb

 (gdb) run -t andrewID < exploit-rawfile

POTENTIAL POINTS OF FAILURE

 Don’t use byte value 0A in your exploit

 ASCII for newline

 Gets() will terminate early if it sees this

 Multiple exploits submitted for the same level

always takes the latest submission

 So if you pass correctly once, but accidently pass the

wrong exploit later, just pass the correct one again

 If you manage to execute your exploit….

 GDB will say weird things

 “Can’t access memory…” etc.

 Just ignore it and keep going

 Don’t forget the –n flag on the last level

BUFLAB

 The writeup contains all the lab knowledge

 How to use the tools

 How to write corruption code

 Even tells you how to solve the level (at a high level)!

 Please don’t ask questions answered by the

writeup

 Or I will make this sad face: TT_TT

 The writeup is on Autolab

 Couple links down from the handout

A LESSON ON ENDIANNESS

 We’re working with little endian

 Least significant byte is at the lower address

Higher addresses

… Caller stack frame

Return Address

Saved %ebp  %ebp

Saved %ebx

Canary
 Potential way to detect

stack corruption

MSB [7] [6] [5] [4]
buf string

(each char is a byte)[3] [2] [1] [0] LSB

…

Lower addresses

EXAMPLE OF ENDIAN IN BUF LAB

 Example byte code input:

 01 02 03 04
05 06 07 08
09 AA BB CC
55 44 04 08

 Little Endian

 Addresses will look as

they normally do when

they end up on the stack.

 Here, value 0x08044455

reads as 0x08044455 on

the stack.

Higher

addresses

…

08 04 44 55
 Potentially overwritten

return address

CC BB AA 09

 Input string address

08 07 06 05

04 03 02 01

…

Lower

addresses

MISCELLANY BUT NECESSARY

 Canaries

 Attempts to detect overrun buffers

 Sits at the end of the buffer (array)

 If the array overflows, hopefully we detect this with a

change in the canary value….

 NOP sleds

 The nop instruction means “no-op/ no operation”

 In computer architecture it’s like “pipeline bubbles”

 Used to “pad” instructions (or exploits!)

 Place your exploits at the end of the nop sled

 Allows you to be “sloppier” in providing the return address

of your exploit

DEMO TIME (IF CLASS ISN’T OVER YET)

 Byte code format

 Byte code feeding

 Example assembly

 Compiling assembly

 Not assembling

 Assembly to byte code

STOLEN CREDITS & QUESTIONS SLIDE

 xkcd: Tabletop Roleplaying

 StackOverflow: Supporting Recursion

 StackOverflow: Direction of Stack Growth

 Understanding the SPARC Architecture

 CS:APP p. 220 – Stack Frame Structure

 Smashing the Stack for Fun and Profit

 CS:APP p.262 – NOP sleds

 CS:APP p.263 – Stack Frame with a canary

 Double Mocha Latte Picture

http://xkcd.com/244/
http://xkcd.com/244/
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://stackoverflow.com/questions/664744/what-is-the-direction-of-stack-growth-in-most-modern-systems
http://stackoverflow.com/questions/664744/what-is-the-direction-of-stack-growth-in-most-modern-systems
http://www.sics.se/~psm/sparcstack.html
http://www.sics.se/~psm/sparcstack.html
http://insecure.org/stf/smashstack.html
http://4.bp.blogspot.com/-bAabhSu2d_Y/T8kNSEUXXOI/AAAAAAAABjc/2fvbJc5NOp8/s1600/185069865907538817_66ZQq9Pq_c.jpg

