ANITA’S SUPER AWESOME

® RECITATION SLIDES

‘ 15/18-213: Introduction to Computer Systems
@ Stacks and Buflab, 23 Sept 2013
@® AnitaZhang

WHAT’S NEW (OR NOT)

Bomb Lab 1s due Tuesday (tomorrow), 11:59 PM

Your late days are wasted here

Student: “But if you wait until the last minute, then
1t only takes a minute!”
Not (quite) true

Buf Lab out Tuesday (tomorrow), 11:59 PM
Hacking the stack

Stacks will be on the exams
They're tough at first, but I believe in you ©

SPEAKING OF THE EXAM...

Midterm: Wed, 16 Oct — Sat, 19 Oct 2013

Covers everything up to, and including, caches.
Chapters 1-3 and 6 of textbook.
Up to and including Cache Lab.
Lectures up to and including Caches (1 Oct 2013).

Recitation exam review the week of exam.
“Read each chapter 3 times, work the practice

problems, and do previous exams.”

Do enough midterms until you feel comfortable with
the material (at least 5 recent ones).
Depending on the semester, caches can be found in Exam 2.

TO THOSE WHO WANT A COOL SHELL

http://www.contrib.andrew.cmu.edu/~anitazha/15213 tips.html
Scroll down to the part about “Shell of Choice”

Follow the directions
Your terminal will look something like this:

catshark
hammerheadshark
houndshark
lemonshark
makoshark

your best Anital

http://www.contrib.andrew.cmu.edu/~anitazha/15213_tips.html

JOURNEY THROUGH TIME

Basic Assembly Review
Jump Tables vs. Sparse Switch
Terminology

Stacks
IA32 Stack Discipline

Function Call Overview

Stack Walkthrough
Extras on x86(_64) stacks

Buf Lab Quick Start

Essential Items of Business
Miscellany

Demo...?

ASSEMBLY COVERAGE: JUMP TABLES

Jump tables

Think of it as an array of addresses in memory

o Use jump instructions to execute from these addresses
Using assembly 1t is possible to index into the array
Each entry of will hold addresses of instructions

JUMP TABLE EXAMPLE

The tip-off 1s something like this:
jmpg *0x400600(,%rax,8)
Empty base means implied O
%rax is the “index”
8 1s the “scale” (64-bit machine addresses are 8 bytes)
* indicates a dereference (like in C notation)
Like 1eal: does not do a dereference with parenthesis

Put it all together: “Jump to the address stored in the
address 0x400600 + %rax*8”

Using GDB (example output): x/8g 0x400600
0x400600: 0x00000000004004d1 0x00000000004004c8
0x400610: 0x00000000004004c8 0x00000000004004be
0x400620: 0x00000000004004c1 0x00000000004004d7
0x400630: 0x00000000004004c8 0x00000000004004be

ASSEMBLY COVERAGE: SPARSE SWITCH

Sparse switch vs. jump tables
Jump tables work if every entry has a jump location

Sparse switches cover cases where there are less
densely packed cases

o Does not make sense to allocate space for 100 entries if only
1 and 100 are used as cases

o In the following example: uses labels to go to the next
instruction

SPARSE SWITCH EXAMPLE

int divl11ll(int x) { movl 8(%ebp),%eax # get X
switch(x) { cmpl $444,%eax # x:444
case 0: return O; je L8
case 111: return 1; jg L16
case 222: return 2; cmpl $111,%eax # x:111| | 5-
case 333: return 3; je L5 mov1 $1,%eax
case 444: return 4; jg L17 L6: jmp L19
case 555: return 5; testl %eax,%eax # x:0 movl $2,%eax
case 666: return 6; je L4 jmp L19
case 777: return 7; jmp L14 L7 movl $3,%eax
case 888: return 8; jmp L19
case 999: return 9; L8:
default: return -1; movi $4,%eax
’ jmp L19
}
}

SOME KIND OF STACK MOTIVATION

YOUR PARTY ENTERS THE TAVERN.

T GATHER EVERYONE AROUND
A TABLE. I HAVE THE ELVES
START WHITTLING DICE. AND
GET QUT SOME PARCHMENT
FOR CHARACTER SHEETS.

\ HEY, NO RECURSING.

/

Im

“In order to support general recursion, a language needs a way to
allocate different activation records for different invocations of the
same function. That way, local variables allocated in one recursive call
can coexist with local variables allocated in a different call.” (credits to

stack overflow)

DEFINITIONS AND CONVENTIONS

Register
Some place in hardware that stores bits
o Like boxes on the side of memory

Caller save
Saved by the caller of a function

Before a function call, the caller must save any caller
save register values it wants preserved

Callee save
Saved by the callee of a function

The callee i1s required to save/ restore values in these
registers if it 1s using these registers in the function

ASIDE: WHY BOTH?

Why do we have both caller and callee save?
Performance

Not all registers need to be saved

IA32 REGISTERS

6 general purpose registers
Caller save
o %eax, %ecx, %edx
o Saved by the caller of a function

Callee save
o %ebx, %edi, %esi

o Saved by the callee of a function

SPECIAL IA32 REGISTERS

Base Pointer
%ebp
Points to the “bottom” of the stack frame
The location of old %ebp that gets pushed on entry
Stack Pointer
%esp
Points to the “top” of the stack
Usually whatever was last pushed on the stack
Instruction Pointer (Program Counter)
%eip
Points to the next instruction to be executed

TA32 TERMINOLOGY

Higher addresses “Dottom”
(ie. OXFFFFFFFF)

Direction of
stack
ogrowth

%nesp->

Lower addresses
(1e. 0x00000000)

ASIDE: TECHNOLOGY NOTE (AGAIN!)

This class 1s (strictly) x86(_64)

Other architectures may have different conventions

o May not use stacks at all (weird, I know)

Stacks grow down/ up depending on implementation

o Very confusing to those new to stacks

ASIDE: DIRECTION OF GROWTH

Stack direction REALLY doesn’t matter

Direction of growth 1s dependent on the processor
May be selectable for up/down
...Or some other direction...?

BAM! CIRCULAR STACK!

CWT
{ourrent window)

CWP+]

-, wil Incals
.)

whing

|'/ wl frs / w outs ,:P
| ,!I ’ f RESTORE,
i [4 RETT

i
lu' w2 Ipcals ..I

w3 outs

S T e Y

! il
& owd ours | wd locals
, 1]

!I ‘|
wllocaie Y WS oufs
b rr T !
.

w5 loculs

SPARC (scalable processor architecture) Architecture

ASIDE: DIRECTION OF GROWTH

Examples from StackOverflow
x86 - down
SPARC - in a circle
System z - 1n a linked list (down, at least for zLinux)
ARM - selectable
PDP11 - down

WHAT HAPPENS IN TA32: PUSH

o Pushing on the stack

push1 %eax

 —

%esp 2>

%esp 2>

o In general, push1 translates to (in AT&T syntax):
« subl $0x4, %esp

movl src, (%esp) ‘

WHAT HAPPENS IN IA32: PoP

o Popping off the stack

popl %eax

 —
%esp 2>

%esp 2>

o In general, pop1 translates to (in AT&T syntax):

- movl (%esp), dest
add1 $0x4, %esp ‘

STACK FRAMES WHATCHAMACALLITS?

Every function call gets a “stack frame”
All the useful stuff can go on the stack!

Local variables (scalars, arrays, structs)
o What the compiler couldn’t fit into registers

Callee/caller save registers
Temporary variables
Arguments

Stacks can make recursion work!

Key 1dea: “Storage for each instance of procedure
call” (stolen out of 15-410 slides)

SO THAT'S WHAT IT LOOKS LIKE...

Earlier Frames

Increasing
Addresses Argument n

Caller’s frame

Argument 1

Return Address

Frame Pointer Saved (old) %ebp

%ebp >
Saved registers, local
variables, and
temporaries
Current (callee) frame
Argument build area
Stack Pointer

%esp >

ROLES OF A (FUNCTION) CALLER
Caller

Save (push) relevant caller save registers
Push arguments
Call function

Caller after function return
“Remove” (add to %esp or pop) arguments
Restore (pop) saved caller save registers

ROLES OF A (FUNCTION) CALLEE
Callee

Push %ebp (save stack frame)
Copy (move) %esp into %ebp
Save (push) callee save registers it wants to use

Callee before return
Restore (pop) callee save registers previously saved

Copy (move) %ebp into %esp
Moves stack pointer to the saved %ebp

Restore (pop) %ebp

FUNCTION CALLS, OTHER OPERATIONS

Implied operations
“call” implicitly pushes return address
o Return address 1s always of the instruction after the call

“ret” implicitly pops return address into %eip

o Becomes the next instruction to execute!

STACK FRAMES IN ACTION

int main() { 08048394 <main>:
return addition(5, 6); 8048394: 55 push %ebp
} 8048395: 89 e5 mov %esp ,%ebp
8048397: 83 e4 0O and $OxFFFFfffo,%esp
int addition(int x, int y) { 804839a: 83 ec 10 sub $0x10,%esp
return x+y; 804839d: c7 44 24 04 06 00 00 mov1 $0x6,0x4 (%esp)
} 80483a4: 00
80483a5: c7 04 24 05 00 00 00 mov 1 $0x5, (%esp)
80483ac: e8 02 00 00 00 call 80483b3 <addition>
80483b1: c9 Teave
80483b2: c3 ret

080483b3 <addition>:

80483b3: 55 push %ebp

80483b4: 89 e5 mov %esp,%ebp

80483b6: 8b 45 Oc mov 0xc (%ebp) ,%eax
80483b9: 8b 55 08 mov 0x8 (%ebp) ,%edx
80483bc: 8d 04 02 lea (%edx ,%eax,1) ,%eax
80483bf: c9 Teave

80483c0: c3 ret

BREAKDOWN: ARGUMENT BUILD

(@) Build the arguments (note: 2 instructions are executed in this example)

0x108

main():
movl $0x6,0x4 (%esp)

%esp—> 0x104 movl $0x5,(%esp) %agp->

 —
0x100
0xFC
%esp = 0x104 %esp = 0x104
%ebp = 0x200 %ebp = 0x200
%eip = 0x804839d %eip = 0x80483ac

BREAKDOWN: FUNCTION CALL

o Call the function

0x108
main():
%esp% 0x104 call 80483b3 <addition>
 —
0x100 %espe
0xFC
%esp = 0x104 %esp = 0x100
%ebp = 0x200 %ebp = 0x200
%eip = 0x80483ac %eip = 0x80483b3

BREAKDOWN: CALLEE SETUP

o StaCk fI'ame Set up (note: 2 instructions are executed in this example)

0x108 addition():
push %ebp
0x104 mov %esp,%ebp
 —
%esp—> 0x100
0xFC %esp—>
%esp = 0x100 %esp = OxFC
%ebp = 0x200 %ebp = OxFC
%eip = 0x80483b3 %eip = 0x80483b6

BREAK FROM THE EXAMPLE.. KIND OF

o Accessing an argument

0x104

Argument 2 OxC(%ebp)
0x100
0xFC Argument 1 0x8 (%ebp)

o In the current frame, arguments are accessed via
references to %ebp
» Notice how argument 1 is at 0x8 (%ebp), not 0x4 (%ebp) ‘

LET’S REVIEW THE CODE AGAIN

C Code

int main() {

return addition (5, 6);

int addition(int x, int y)

{

return x+y;

08048394

8048394:
8048395:
8048397:
804839a:
804839d:
80483a4:
80483a5:
80483ac:
80483bl:
80483b2:

080483b3

80483b3:
80483b4:
80483b6:
80483b9:
80483bc:
80483bf:
80483c0:

<main>:
55
89
83
83
c7
00
c7
e8
c9
c3

e5
e4
ec
44

04
02

<addition>:

55
89
8b
8b
8d
c9
c3

e5
45
55
04

£0
10
24

24
00

Oc
08
02

Disassembly

04 06 00 00

05 00 00 00
00 00

push
mov
and
sub
movl

movl
call
leave
ret

push
mov
mov
mov
lea
leave
ret

%ebp

%esp, $ebp
SOxXfffffFff0,%esp
$0x10, %esp
$0x6,0x4 (%esp)

$0x5, (%esp)
80483b3 <addition>

%ebp

%esp, $ebp

Oxc (%ebp) , $eax

0x8 (%ebp) , $edx
(%edx, %eax,l) ,%eax

BREAKDOWN: PREPARING TO RETURN

o Preparing to return from a function

0x108
addition():
0x104 Teave
 —
(equivalent to:
0x100 movi %ebp, %esp %esp%

pop %ebp)

%esp—> O0xFC

%esp = OxFC %esp = 0x100
%abp = OXFC %abp = 0x200 '
%aip = 0x80483bf %aip = 0x80483C0

BREAKDOWN: RETURN

o Return from a function

0x108

addition():

ret

— %esp%
(equivalent to:

popl %eip)

0x104

%esp—~> 0x100

0xFC
%esp = OxFC %esp = 0x104
%ebp = 0x200 %ebp = 0x200
%eip = 0x80483c0 %eip = 0x80483bl

STACKS AND STUFF ON X86 64

Arguments (< 6) are passed via registers
%rdi, %rsi, %rdx, %rcx, %r8, %r9

Extra arguments passed via stack!
IA32 stack knowledge still matters!

Don’t need %ebp as the base pointer

Compilers are smarter now

Overall less stack use
Potentially better performance

AND FLOATING POINT?

Floating point arguments are complicated
Out of the scope of this course
Some chips have a separate floating point stack

Example of complication

x86_64 stack on function entry needs to be 16 byte
aligned for floating point

And other potential issues you shouldn’t worry about

BUFLAB

A series of exercises asking you to overflow the
stack and change execution

You do this with inputs that are super long and write
over key stack values

Incorrect inputs will not hurt your score

Seminal paper on stack corruption
Smashing the Stack for Fun and Profit

http://insecure.org/stf/smashstack.html

BASIC APPROACH

Examine the provided C code/ disassembly

Disassembling
o> objdump -d bufbomb > outfile

Don’t forget that GDB 1s still used for this lab!
Find out how long to make your inputs

Write exploits to divert program execution
Profit

BUFLAB TOOLS

./makecookie andrewiD
Makes a unique “cookie” based on your Andrew ID
./hex2raw

Use the hex generated from assembly to pass raw strings into

bufbomb
Use with —n in the last stage
./bufbomb -t andrewiD
The actual program to attack
Always pass in with your Andrew ID so your score 1s logged
Use with —n in the last stage

How TO INPUT ANSWERS

Put your byte code exploit into a text file
Then feed it through hex2raw

Later stages: write (corruption) assembly
Compiling
> gcc -m32 -c example.S

Get the byte codes
> objdump -d example.o > outfile

Then feed it through hex2raw

WAYS TO FEED BYTE CODES

Option 1: Pipes

> cat exploitfile | ./hex2raw | ./bufbomb -t andrewip

Option 2: Redirects

> ./hex2raw < exploitfile > exploit-rawfile
> ./bufbomb -t andrewip < exploit-rawfile

Option 3: Redirects in GDB
> gdb bufbomb
(gdb) run -t andrewID < exploit-rawfile

POTENTIAL POINTS OF FAILURE

Don’t use byte value 0A in your exploit
ASCII for newline
Gets () will terminate early if it sees this

Multiple exploits submitted for the same level
always takes the latest submission

So 1f you pass correctly once, but accidently pass the
wrong exploit later, just pass the correct one again

If you manage to execute your exploit....
GDB will say weird things

o “Can’t access memory...” etc.

o Just 1ignore 1t and keep going

Don’t forget the —n flag on the last level

BUFLAB

The writeup contains all the lab knowledge
How to use the tools
How to write corruption code
Even tells you how to solve the level (at a high level)!

Please don’t ask questions answered by the
writeup
Or I will make this sad face: TT_TT

The writeup 1s on Autolab
Couple links down from the handout

A LESSON ON ENDIANNESS

o We're working with little endian

» Least significant byte is at the lower address

Higher addresses

Return Address

Caller stack frame

Saved %ebp

Saved %ebx

Canary

< %ebp

< Potential way to detect
stack corruption

Lower addresses

EXAMPLE OF ENDIAN IN BUF LAB

Example byte code input:

01 02 03 04
05 06 07 08
09 AA BB CC
55 44 04 08

Little Endian

Addresses will look as
they normally do when

they end up on the stack.

Here, value 0x08044455
reads as 0x08044455 on
the stack.

Higher
addresses

08 04 44 55

< Potentially overwritten
return address

CC BB AA 09

08 07 06 05

04 03 02 01

< Input string address

Lower
addresses

MISCELLANY BUT NECESSARY

Canaries

Attempts to detect overrun buffers

Sits at the end of the buffer (array)

If the array overflows, hopefully we detect this with a
change in the canary value....

NOP sleds

The nop instruction means “no-op/ no operation”
In computer architecture it’s like “pipeline bubbles”
Used to “pad” instructions (or exploits!)
Place your exploits at the end of the nop sled

Allows you to be “sloppier” in providing the return address
of your exploit

DEMO TIME (IF CLASS ISN'T OVER YET)

o Byte code format
o Byte code feeding
o Example assembly

o Compiling assembly
» Not assembling

o Assembly to byte code

STOLEN CREDITS & QUESTIONS SLIDE

xked: Tabletop Roleplaying

StackOverflow: Supporting Recursion
StackOverflow: Direction of Stack Growth
Understanding the SPARC Architecture
CS:APP p. 220 — Stack Frame Structure
Smashing the Stack for Fun and Profit
CS:APP p.262 — NOP sleds

CS:APP p.263 — Stack Frame with a canary
Double Mocha Liatte Picture

O O 0O 0O 0O 0O 0O 0 o

http://xkcd.com/244/
http://xkcd.com/244/
http://stackoverflow.com/questions/14658612/what-properties-must-a-language-have-to-support-recursion
http://stackoverflow.com/questions/664744/what-is-the-direction-of-stack-growth-in-most-modern-systems
http://stackoverflow.com/questions/664744/what-is-the-direction-of-stack-growth-in-most-modern-systems
http://www.sics.se/~psm/sparcstack.html
http://www.sics.se/~psm/sparcstack.html
http://insecure.org/stf/smashstack.html
http://4.bp.blogspot.com/-bAabhSu2d_Y/T8kNSEUXXOI/AAAAAAAABjc/2fvbJc5NOp8/s1600/185069865907538817_66ZQq9Pq_c.jpg

