Carnegie Mellon

Representing Data

15-213: Introduction to Computer Systems
Recitation 3: Monday, Sept. 9th, 2013

Marjorie Carlson
Section A

Carnegie Mellon

Welcome to 15-213 (Belatedly!)

m Yay 15-213!

m My advice on doing well in this course:
" Labs: start early.
= Exams: you should already be doing practice exam questions.
= Previous exam questions and answers are all online.
= Questions don’t change much from semester to semester.

= |f you do the exam questions related to each week’s topic as
you go, you’ll know all the material by exam time.

" The textbook is actually really useful. (!)

= General advice: this course is a good place to get more comfortable
with UNIX and C, if you aren’t already.

Carnegie Mellon

Welcome to Recitation

m Recitation is a place for interaction
= |f you have questions, please ask.

= |f you want to go over an example not planned for recitation, let
me know.

m Each week we’ll cover:

= A quick recap of topics from class, especially ones we have found
students struggled with in the past.

= Tips for labs.

= Sample problems to reinforce the main ideas and prepare for
exams.

Carnegie Mellon

Agenda

m How Do | Data Lab?

m Integers
= Biasing division
m Floats

= Binary fractions
= |EEE standard
= Example problem

Carnegie Mellon

How Do | Data Lab?

(due Thursday at 11:59 pm)

mStep 1: Download lab files
= All [ab files are on autolab

= Remember to also read the lab handout (“view writeup” link)

mStep 2: Work on the right machines
= Remember to do all your lab work on Shark machines

" This includes untarring the handout. Otherwise, you may lose
some permissions bits

= |f you get a permission denied error, try “chmod +x filename”
= Doyourworkinbits.c

Carnegie Mellon

How Do | Data Lab?

m Step 3: Test test test!
We have given you FOUR WAYS to test your code before
submitting!
= _/btest lets you debug (printf, test single inputs).
Type make before using it.

./dlc bits.c enforces the coding rules (number of operations).

./bddcheck/check.pl tests definitively for correctness.

./driver.pl uses both DLC and the BDD checker — this is what
Autolab uses.

m Code that passes btest will not necessarily pass autolab!

How Do | Data Lab?

m Step 4: Submit to Autolab

= Unlimited submissions, but please don’t use autolab in
place of driver.pl

" Must submit via web form

" To package/download files to your computer, use
tar -cvzf out.tar.gz inl in2 .. (if relevant)
and your favorite file transfer protocol

Carnegie Mellon

How Do | Data Lab? — Tips!

m Write Clike it’s 1989 (for DLC — only used in data lab)
= Declare variable at top of function
= Make sure closing brace (“}”) is in 15t column

m Be careful of operator precedence
= Do you know what order ~a+1+b*c<<3*2 will execute in?
= Neither do I. Use parentheses: (~a)+1+(b*(c<<3)*2)

m Take advantage of special values like 0, -1, and T,

m Operations with undefined behavior in C may have defined
behavior on our architecture. (Examples: addition
overflow, bit-shifting by 32.) It’s OK to use them.

m Reducing operations once you’re under the threshold
won’t get you extra points (just more glory).

Carnegie Mellon

Where Can | Get Help?

The assignment writeup
The assignment writeup!

15-213 FAQ: http://www.cs.cmu.edu/~213/fag.html
Lecture notes and the textbook

Staff email list: 15-213-staff@cs.cmu.edu

Office hours: Sun-Thu, 5:30-8:30 pm, in Wean 5027
Peer tutoring: Tue 8:30-11, Mudge Reading Room

Carnegie Mellon

Agenda

m How Do | Data Lab?
m Integers

= Biasing division
m Floats

= Binary fractions
= |EEE standard
= Example problem

10

Integers — Biasing

m You can multiply and divide by powers of 2 with bitshifts

m Asyou’ll see when we learn assembly, your computer does
this a lot!

= Multiply:
= Left shift by k to multiply by 2k
= Let’s try this with binary 000160

= Divide:
= Right shift by k to divide by 2X... sort of
= Let’s try this with binary 61111
= How about binary 10001
= Uh-oh!
= Shifting rounds down, but we want to round toward zero.
= Solution: biasing when the number is negative

1"

Carnegie Mellon

Integers — Biasing

Remember biasing flips rounding direction; If this contains a 1...
only use when dividend is negative /
k

Dividend: X 1 Yy YY)
+2k 1 O 000 O O 1 000 1
1 (XX} (X X}
\ J
Y
... this is incremented by 1 Binary Point
Divisor: / 2k O YY) O 1 O YY) O O /
|- x/ 2k -| 1 i 1 1 1 000 4 o0
\ J

Biasing adds 1 to final result

Y

Incremented by 1

Carnegie Mellon

Agenda

m How Do | Data Lab?
m Integers

= Biasing division
m Floats

= Binary fractions
= |EEE standard
= Example problem

13

Carnegie Mellon

Floating Point — Fractions in Binary

,
2i—1
4
oo o ‘ 2
— 1
bi |bis|eee| bz | b | bolbi|b2|bs|ese| b,
12 — |
1/4 ‘ eooeo
1/8
27

m Representation

= Bits to right of “binary point” _
represent fractional powers of 2 i br. X ok

" Represents rational number: S

14

Carnegie Mellon

Floating Point — Fractions in Binary

m Convert binary to decimal:
= 1.1

" 0.0011
" 1010.00101

m Convert decimal to binary:
= 3 3/4
= 2 3/32
= 5,875

15

Carnegie Mellon

How Can We Represent Numbers
Efficiently?

m What do we do if we want to convey

-592349235823740180. 3

in 10 digits?

16

Carnegie Mellon

How Can We Represent Numbers
Efficiently?

m What do we do if we want to convey

-592349235823740180. 3

in 10 digits?
Hint:

17

Carnegie Mellon

How Can We Represent Numbers
Efficiently?

m What do we do if we want to convey

-592349235823740180. 3

in 10 digits?

-5.92349 * 10V

|
sign mantissa exponent

Carnegie Mellon

Floating Point — Scientific Notation

m So, how can we put binary numbers into scientific
notation?

101.111
U

1.01111 * 22

\)
!

sign (S) mantissa (M) exponent (E)

m Numerical form: (-1)°> M 2¢

19

Carnegie Mellon

Floating Point — IEEE Standard

m Floating points are basically a way to encode binary
scientific notation.

S |exp frac

1 8 bits 23 bits

m But exp # E and frac # M, because IEEE format optimizes
to increase the range of numbers that can be represented.

= |f numbers are always in the format 1.xxxx (we’ll revisit this!),
encoding the 1 is unnecessary. So frac is simply M without the
leadingl. M = 1 + frac

= exp is unsigned and can represent the numbers 0 to 255. We'd
rather have it represent -127(ish) to 128(ish), so we subtract a bias
of 127 (2%1-1) get from Eto getexp. E = exp - bias

20

Carnegie Mellon

Floating Point — IEEE Standard

101.111
U/
/E 1.01111 * 22\
\)
1
sign (S) mantissa (M) exponent (E)
m S=+ sos=0 Remember!
M =1+ frac
m E=2 SO exp = E = exp - bias
= M=1.01111 so frac = Bias = 127

21

Carnegie Mellon

Floating Point — IEEE Standard

101.111
U
/E 1.01111 * 22\
\)
1
sign (S) mantissa (M) exponent (E)
m S=+ sos=0 Remember!
m E=2 so exp = 129 (2 + bias) pEll _ iX; fpf);as
m M=1.01111 so frac = Bias = 127

22

Carnegie Mellon

Floating Point — IEEE Standard

101.111
U
/E 1.01111 * 22\
\)
1
sign (S) mantissa (M) exponent (E)
m S=+ sos=0 Remember!
m E=2 so exp = 129 (2 + bias) pEll _ iX; fpf);as
= M=1.01111 so frac=01111 Bias = 127

23

Carnegie Mellon

Floating Point — Example

m Consider the following 5-bit floating point representation
based on the IEEE floating point format. This format does
not have a sign bit — it can only represent nonnegative

numbers.
"= There are k=3 exponent bits. 4 3 2 1 0
® There are n=2 fraction bits. exp frac

What’s the bias?

What does 100 10 represent?
What does 001 01 represent?
How would you represent 6?

How would you represent %?

24

Carnegie Mellon

Floating Point — Denormalized Range

m If that was all there was to it, the smallest number
representable would be 23, which is not that small. And
it would be represented by 000 00. Hmm...

m |EEE uses a trick to give us numbers closer to O:
drop the implied leading 1.

Normalized Denormalized

expz0 exp=0

implied leading 1 no implied leading 1

E = exp - bias E =1-Dbias

denser near origin evenly spaced

represents most numbers represents very small numbers

25

Carnegie Mellon

Floating Point — Special Cases

m Well, denormalizing got us our 0. Now how about infinity?

m The largest exponent is coopted to encode special cases:

= exp=allls
frac =all Os
represents infinity (+ or -)

= exp=allls
fracisn’t all Os
represents NaN

26

Carnegie Mellon

Floating Point — Special Case Examples

m Back to our mini-floats: 4 3 9 1 0

" There are k=3 exponent bits. exp frac

® There are n=2 fraction bits.
" Bjas=3

What does 000 10 represent?
What’s the smallest representable nonzero value?

|
[
m What's the largest representable finite number?
m What's the smallest normalized number?

|

What’s the largest denormalized number?

27

Carnegie Mellon

Two More Tips and You Can Convert
Anything!

m Decimal = float is a little trickier because you have to
figure out whether it has to be encoded as normalized or
denormalized.

= Strategy 1: compare your number to the smallest normalized
number before converting it.

= Strategy 2: try to encode it as normalized; if your exponent doesn’t
fit in exp, change exp to 0 and shift your decimal point accordingly.

m You need to know how to round!

28

Carnegie Mellon

Floating Point — Rounding

m Floats round to even
= Why? Avoid statistical bias of always rounding up or down.
= How? Like this:

1.0100, truncate 1.01,
1. @1@12T below half; round down 1.01,
1.0110, interesting case; round to even 1.10,
1.0111, above half; round up 1.10,
1. 1@@@2‘1" truncate 1.10,
1. 1@@121“ below half; round down 1.10,
1.1010, Interesting case; round to even 1.109,
1.1011, above half; round up 1.11,
1. 11@@2‘1' truncate 1.11,

29

Carnegie Mellon

Floating Point — Rounding Examples

m Back to our mini-floats: 4 3 9 1 0

" There are k=3 exponent bits. exp

frac

® There are n=2 fraction bits.
" Bias=3

Value Floating Point Bits | Rounded Value
9/32

19

30

Carnegie Mellon

Floating Point — Rounding Examples

m Back to our mini-floats: 4 3 2 1 0
" There are k=3 exponent bits. exp frac
" There are n=2 fraction bits.
" Bias=3
Value Floating Point Bits | Rounded Value
9/32 001 00 1/4
8 110 00 8
9 110 00 8
19 111 o0 + inf

31

Carnegie Mellon

Questions?

32

