Carnegie Mellon

Proxy: Web & Concurrency

15-213: Introduction to Computer Systems
Recitation 13: Monday, Nov. 18th, 2013

Marjorie Carlson
Section A

Carnegie Mellon

Proxy Mechanics

m Reminder: no partners this year.

= No code review (for malloc either!).

= Partially autograded, partially hand-graded.
m Due Tuesday, Dec. 3.

" You can use two grace days or late days.
= Last day to turn in: Thursday, Dec. 5.

m Just to orient you...
" One week from today: more proxy lab.
= Two weeks from today: exam review.
" Three weeks from today: final exam begins.

Carnegie Mellon

Outline — Proxy Lab

Step 1: Implement a sequential web proxy
Step 2: Make it concurrent
Step 3: ..*

|
|
|
m Step 4: PROFIT

* Cache web objects

Carnegie Mellon

Step 1: Implement a Proxy

m In the “textbook” version
of the web, there are
clients and servers.

What is the
current time?

= Clients send requests. L
= Servers fulfill them.
m Reality is more O @
complicated. In this lab, C —) (—)
you’re writing a proxy. Alice Bob

= A server to the clients.
= A client to the server(s).

The time
is 7 p.m.

Images here & following based on http://en.wikipedia.org/wiki/File:Proxy_concept_en.svg

Carnegie Mellon

Step 1: Implement a Proxy

Ask Bob what
the current time is.

What is the
current time?

Bob says the
timeis 7 p.m.

Carnegie Mellon

Step 1: Implement a Proxy

m Proxies are handy for a lot of things.

= To filter content ... or to bypass content filtering.
= For anonymity, security, firewalls, etc.

® For caching — if someone keeps accessing the same web resource,
why not store it locally?

m So how do you make a proxy?

® |t's a server and a client at the same time.

" You’'ve seen code in the textbook for a client and for a server; what
will code for a proxy look like?

= Ultimately, the control flow of your program will look more like a
server’s. However, when it’s time to serve the request, a proxy
does so by forwarding the request onwards and then forwarding
the response back to the client.

Carnegie Mellon

Step 1: Implement a Proxy

Client Server
[A
socket socket
bind > open listenfd
open clientfd < l
listen
l J
X connect [~TTTTTTTTTToo > accept <
v v
Chent/ » rio writen Mrio readlineb|¢
Server | |
Session rio readlineb [« rio writen
v \4
EOF
close W f[-=----------- »rio readlineb
A 4
close
7

Carnegie Mellon

Step 1: Implement a Proxy

m Your proxy should handle HTTP/1.0 GET requests.

= Luckily, that’s what the web uses most, so your proxy should work
on the vast majority of sites.

= Reddit, Vimeo, CNN, YouTube, NY Times, etc.
m Features that require a POST operation (i.e., sending data

to the server) will not work.
" Logging in to websites, sending Facebook messages, etc.

m HTTPS is expected not to work.
" Google (and some other popular websites) now try to push users to
HTTPS by default; watch out for that.
m Your server should be robust. It shouldn’t crash if it
receives a malformed request, a request for an item that

doesn’t exist, etc. etc.

Carnegie Mellon

Step 1: Implement a Proxy

m What you end up with will resemble:

Client socket address Server socket address
128.2.1?242:51213 208.216.18\1.15:80

P
<

Proxy server socket address Proxy client socket address
128.2.194.34:15213 128.2.194.34:52943

1

Carnegie Mellon

Aside: Telnet Demo

m Telnet (an interactive remote shell — like ssh, minus the s)

® You must build the HTTP request manually. This will be useful for
testing your response to malformed headers.

telnet www.cmu.edu 80

GET http://www.cmu.edu/ HTTP/1.0

10

Carnegie Mellon

Aside: cURL Demo

m cURL: “URL transfer library” with command-line program
= Builds valid HTTP requests for you!

curl http://www.cmu.edu/

® Can also be used to generate HTTP proxy requests:

curl --proxy lemonshark.ics.cs.cmu.edu:3092 http://
www.cmu.edu/

11

Carnegie Mellon

Outline — Proxy Lab

Step 1: Implement a sequential web proxy
Step 2: Make it concurrent
Step 3: ..*

|
|
|
m Step 4: PROFIT

* Cache web objects

12

Carnegie Mellon

Step 2: Make it Concurrent

m In the textbook version of the web, a client requests a
page, the server provides it, and the transaction is done.

Web
client) v
(browser) /

m A sequential server can handle this. We just need to serve
one page at a time.

m This works great for simple text pages with embedded
styles (a.k.a., the Web circa 1997).

13

Carnegie Mellon

Step 2: Make it Concurrent

m Let’s face it, what your browser is really doing is a little
more complicated than that.

= Asingle HTML page may depend on 10s or 100s of support files
(images, stylesheets, scripts, etc.).

"= Do you really want to load each of those one at a time?

= Do you really want to wait for the server to serve every other
person looking at the web page before they serve you?

m To speed things up, you need concurrency.

= Specifically, concurrent 1/0O, since that’s generally slower than
processing here.

= You want your server to be able to handle lots of requests at the
same time.

m That’s going to require threading. (Yay!)

14

Carnegie Mellon

Aside: Setting up Firefox to use a Proxy

o0 0 Advanced - You may use any browser’

(0] o @y A B QS O ks . .
RS- --8C] © but we’ll be grading with

Configure Proxies to Access the Internet ' Fi refox

Ce () No proxy

Ca () Auto-detect proxy settings for this network , - Prefe re nces > Adva nced >

[__JUse system proxy settings

Cz (¢)Manual proxy configuration: » Network > Setti ngs-u

HTTP Proxy: catshark.ics.cs.cmu.edu Port: 3092 |7/

~ Q]Use this proxy server for all protocols [(under ConnECtion)

SSL Proxy: catshark.ics.cs.cmu.edu Port 3092

{4 :
FTP Proxy: catshark.ics.cs.cmu.edu Port: 3092 | . CheCk Use th IS proxy for
SOCKS Host: catshark.ics.cs.cmu.edu Port 3092

) B : all protocols” or your proxy

(™ No Proxy for:

1 | femion 7001 | will appear to work for
Example: .mozilla.org, .net.nz, 192.168.1.0/24 HTTPS trafﬁc-

() Automatic proxy configuration URL:

m Also, turn off caching!
Q2 @ Cancel 0K
E

15

Carnegie Mellon

Aside: Using FireBug to Monitor Traffic

m Install Firebug (getfirebug.com).

a2 Firebug

web Development EVO|\IEd. Source Firebug Lite Extensions

m Tools > Web Developer > FireBug > Open FireBug.
m Click on the triangle besides “Net” to enable it.

" S SO Y| Console HTML CSS Script DOM Net &2 Cookies P SR

v Enabled
LS Clear (00 : () HTML CSS JavaScript XHR Images

m Now load a web page; you will see each HTML request
and see how it resolves, how long it takes, etc.

16

gie Mellon

Make it Concurrent: Sequential Proxy Demo

® 00

Carnegie Mellon University | CMU

Q) (a)

(&] ',.,g" Google

@/) @ www.cmu.edu/index.shtml

DIRECTORY SEARCH | NEWS | CALENDAR

LIBRARIES | CAREERS | SUPPORT CMU

NfYEOG

GLOBAL SOCIETY & ECONOMY

National Landmark
Status

Carnegie Mellon Universi...

SEARCH What do cellulose hot dog casings,
World War I gas masks and synthetic
|_QUICKLINKS: E rubber have in common?
Academics These and many other innovations
@ € D = |v| console HTML CSS Script DOM [Net ~ | Cookies R XX
J @ Clear Persist All HTML CSS JS XHR Images Flash Media
"URL | Status | Domain | size Remote IP | Timeline . .

> GET indexshemi amucdu 1446 126.2.220.203052 [11 Note this sloped shape: many
P GET cmu.css 200 OK cmu.edu 47.5 KB 128.2.220.20:3092 M 13ms
P GET cmu-new.css 200 OK cmu.edu 18.5KB 128.2.220.20:3092 Il 21ms req uests are made at Once but
» GET cmu-new-print.css 200 OK cmu.edu 1.8 KB 128.2.220.20:3092 B 40ms ’
> GET dojojs 200 OK cmu.edu 126.2 KB 128.2.220.20:3092 I soms H b t t'
> GET scripts.js 200 OK cmu.edu 6.8 KB 128.2.220.20:3092 N 55ms on Iy One JO ru nS a a Ime-
P GET jquery.js 200 OK cmu.edu 70.5KB 128.2.220.20:3092 I 67ms T
P GET homepage.js 200 OK cmu.edu 1.1 KB 128.2.220.20:3092 N 63ms
P GET app_ad.js 200 OK cmu.edu 2.6 KB 128.2.220.20:3092 I 75ms
> GET gajs 200 OK google-analytics.com 15.3 KB 128.2.220.20:3092 B 40ms
P GET CarnegieMellonUniversity_wordma 200 OK cmu.edu 48.7 KB 128.2.220.20:3092 I 55ms
» GET btn_go.gif 200 OK cmu.edu 166 B 128.2.220.20:3092 B 45ms
P GET mellon_institute_748x460.jpg 200 OK cmu.edu 93 KB 128.2.220.20:3092 R 75ms
P GET autism_research_month_240x126.j 200 OK cmu.edu 29.8 KB 128.2.220.20:3092 I 8 1ms
P GET poets_on_tour_240x126.jpg 200 OK cmu.edu 19.8 KB 128.2.220.20:3092 I O7ms
P GET pres_jared_cohon_240x126.jpg 200 OK cmu.edu 13 KB 128.2.220.20:3092 I 61ms
> GET global.gif 200 OK cmu.edu 4.4KB 128.2.220.20:3092 I 119ms
> GET logo-ii.gif 200 OK cmu.edu 5.3KB 128.2.220.20:3092 —— 871S
P GET logo-cmtoday.gif 200 OK cmu.edu 49 KB 128.2.220.20:3092 N 116ms
P GET social-sprites.png 200 OK cmu.edu 5.9KB 128.2.220.20:3092 ee—— 021T'S
P GET mellon_institute_748x460.jpg 200 OK cmu.edu 93 KB 128.2.220.20:3092 I 116ms
» GET transGray85.png 200 OK cmu.edu 9358 128.2.220.20:3092 eee——— - - IS
P GET horizontal_rule.gif 200 OK cmu.edu 3KB 128.2.220.20:3092 I 136ms
P GET __utm.gif?utmwv=>5.4.1&u..cmd%3l 200 OK google-analytics.com 35B 128.2.220.20:3092 B 30ms
24 requests 670.4 KB 528ms (onload: 591ms)

17

gie Mellon

Make it Concurrent: Concurrent Proxy Demo

® 00

Carnegie Mellon University | CMU

c] ',./g" Google

Q) (8]

@) @ www.cmu.edu/index.shtml

DIRECTORY SEARCH

SEARCH

NEWS CALENDAR

LIBRARIES

CAREERS | SUPPORT CMU

NfYEOG

GLOBAL SOCIETY & ECONOMY

National Landmark
Status

What do cellulose hot dog casings,
World War I gas masks and synthetic

Carnegie Mellon Universi...

®

)

| QUICKLINKS: : rubber have in common?
Academics These and many other innovations
e Oy : € 2 i =" console HTML CSS Script DOM ‘ Net v ‘ Cookies
J © Clear Persist All HTML CSS JS XHR Images Flash Media
URL | status | Domain_ | size | Remote IP | Timeline
» GET index.shtml 200 OK cmu.edu 14 KB 128.2.220.20:3092 || 11ms
P GET cmu.css 200 OK cmu.edu 47.5 KB 128.2.220.20:3092 M 1lms
P GET cmu-new.css 200 OK cmu.edu 18.5KB 128.2.220.20:3092 B 18ms
» GET cmu-new-print.css 200 OK cmu.edu 1.8 KB 128.2.220.20:3092 B 17ms
» GET dojo.js 200 OK cmu.edu 126.2 KB 128.2.220.20:3092 B 26ms
P GET scripts.js 200 OK cmu.edu 6.8 KB 128.2.220.20:3092 B 20ms
> GET jquery.js 200 OK cmu.edu 70.5 KB 128.2.220.20:3092 B 31ms
> GET homepage.js 200 OK cmu.edu 1.1 KB 128.2.220.20:3092 B 23ms
> GET app_ad.js 200 OK cmu.edu 2.6 KB 128.2.220.20:3092 B 28ms
> GET gajs 200 OK google-analytics.com 15.3 KB 128.2.220.20:3092
P> GET CarnegieMellonUniversity_wordma 200 OK cmu.edu 48.7 KB 128.2.220.20:3092
» GET btn_go.gif 200 OK cmu.edu 166 B 128.2.220.20:3092
> GET mellon_institute_748x460.jpg 200 OK cmu.edu 93 KB 128.2.220.20:3092
» GET autism_research_month_240x126.j, 200 OK cmu.edu 29.8 KB 128.2.220.20:3092
> GET poets_on_tour_240x126.jpg 200 OK cmu.edu 19.8 KB 128.2.220.20:3092
P GET pres_jared_cohon_240x126.jpg 200 OK cmu.edu 13 KB 128.2.220.20:3092
» GET global.gif 200 OK cmu.edu 4.4KB 128.2.220.20:3092
» GET logo-ii.gif 200 OK cmu.edu 5.3 KB 128.2.220.20:3092
» GET logo-cmtoday.gif 200 OK cmu.edu 49 KB 128.2.220.20:3092
P GET social-sprites.png 200 OK cmu.edu 5.9KB 128.2.220.20:3092
> GET mellon_institute_748x460.jpg 200 OK cmu.edu 93 KB 128.2.220.20:3092
» GET transGray85.png 200 OK cmu.edu 935B 128.2.220.20:3092
P GET horizontal_rule.gif 200 OK cmu.edu 3 KB 128.2.220.20:3092
P GET __utm.gif?utmwv=5.4.1&u..cmd%3l 200 OK google-analytics.com 35B 128.2.220.20:3092

Much less waiting (purple);
receiving (green) now overlaps in

time due to multiple connections.

B 42ms
B 25ms

B 8ms

B 21ms
B 27ms

228ms

230ms

B 25ms

B 27ms

B 32ms
M 1llms
B 20ms
M 13ms
M 18ms

B 31ms

24 requests

670.4 KB

524ms (onload: 545ms)

18

Carnegie Mellon

Outline — Proxy Lab

Step 1: Implement a sequential web proxy
Step 2: Make it concurrent
Step 3: ..*

|
|
|
m Step 4: PROFIT

* Cache web objects

19

Carnegie Mellon

Step 3: Cache Web Objects

m Your proxy should cache previously requested objects.

®= Don’t panic! This has nothing to do with cache lab. We're just
storing things for later retrieval, not managing the hardware cache.

® Cache individual objects, not the whole page — so, if only part of
the page changes, you only refetch that part.

®= The handout specifies a maximum object size and a maximum
cache size.

= Use an LRU eviction policy.

® Your caching system must allow for concurrent reads while
maintaining consistency.

20

Carnegie Mellon

Step 3: Cache Web Objects

m Did | hear someone say... concurrent reads?

= Yup. A sequential cache would bottleneck a parallel proxy.
= So..

m Yay! More concurrency!
m Multiple threads = concurrency

m The cache = a shared resource
m So what should we be thinking about?

21

Carnegie Mellon

Step 3: Cache — Mutexes & Semaphores

m Mutexes

= Allow only one thread to run a section of code at a time.

= |f other threads are trying to run the critical section, they will wait.
m Semaphores

= Allows a fixed number of threads to run the critical section.

= Mutexes are a special case of semaphores, where the number of
threads = 1.

22

Step 3: Cache — Reading & Writing

m Reading & writing are sort of a special situation.
= Multiple threads can safely read cached content.
= But what about writing content?
= Two threads writing to same cache block?
= Overwrite block while another thread reading?

m So:
= if a thread is writing, no other thread can read or write.

= if thread is reading, no other thread can write.

m Potential issue: writing starvation
= |f threads are always reading, no thread can write.

= Solution: if a thread is waiting to write, it gets priority over any new
threads trying to read.

= What can we use to do this?

23

Carnegie Mellon

Step 3: Cache — Read-Write Locks

m How would you make a read-write lock with semaphores?
= Luckily, you don't have to!

pthread rwlock * handles that for you
= pthread _rwlock t lock;
= pthread rwlock init(&lock,NULL);
» pthread_rwlock_rdlock(&lock);
= pthread_rwlock_wrlock(&lock);
« pthread_rwlock_unlock(&lock);

24

Carnegie Mellon

Outline — Proxy Lab

Step 1: Implement a sequential web proxy
Step 2: Make it concurrent
Step 3: ..*

|
|
|
m Step 4: PROFIT

* Cache web objects

25

Carnegie Mellon

Step 4: Profit

m New: Autograder

= Autolab and ./driver.sh will check your proxy’s ability to:
= pull basic web pages from a server.
= handle multiple requests concurrently.
= fetch a web page from your cache.

= Please don’t use this grader to definitively test your proxy; there
are many things not tested here.

m Ye Olde Hand-Grading

= A TA will grade your code based on correctness, style, race
conditions, etc., and will additionally visit the following sites on

Firefox through your proxy:
= http://www.cs.cmu.edu/~213

» http://www.cs.cmu.edu/~droh

» http://www.nfl.com

= http://www.youtube.com/watch?v=Z0sLgnYeEkS8

26

Carnegie Mellon

Step 4: Preparing to Profit...

m Test your proxy liberally!

= We don’t give you traces or test cases, but the web is full of special
cases that want to break your proxy!

= Use telnet and/or cURL to make sure your basics are working.

" You can also set up netcat as a server and send requests to it, just
to see how your traffic looks to a server.

= When the basics are working, start working through Firefox.

= To test caching, consider using your andrew web space (~/www)
to host test files. (You can fetch them, take them down, and fetch
them again, to make sure your proxy still has them.)

= To publish your folder to the public server, you must go to
https://www.andrew.cmu.edu/server/publish.html.

27

Carnegie Mellon

Confused where to start?

m Grab yourself a copy of the echo server (pg. 910) and
client (pg. 909) in the book.

m Also review the tiny.c basic web server code to see how
to deal with HTTP headers.

" Note that tiny.c ignores these; you may not.

m As with malloclab, this will be an iterative process:

" Figure out how to make a small, sequential proxy, and test it with
telnet and curl.

= Make it more robust. (You’ll spend a lot of time parsing & dealing
with headers.)

= Make it concurrent.
= Make it caching.
= Repeat until you’re happy with it.

28

Carnegie Mellon

Questions?

29

