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m Malloc Lab due Thursday Nov 14th
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Errors

m Some errors are identified by the driver

$ ./mdriver

Using default tracefiles 1in ./traces/
Measuring performance with a cycle counter.
Processor clock rate ~= 2261.0 MHz

ERROR [trace ./traces/alaska.rep, line 44]: block 8 has 1 garbled byte, starting at byte 0
ERROR [trace ./traces/alaska.rep, line 48]: block 38 has 1 garbled byte, starting at byte ©

ERROR [trace ./traces/alaska.rep, line 6]: Payload address (Ox80000005b) not aligned to 8 bytes
ERROR [trace ./traces/amptjp.rep, line 5]: Payload address (Ox800000043) not aligned to 8 bytes
ERROR [trace ./traces/bash.rep, line 9]: Payload address (0x8000000d3) not aligned to 8 bytes

ERROR [trace ./traces/alaska.rep, line 7]: Payload (0x800000718:0x800000be9) lies outside heap (Ox800000000:0x800000717)
ERROR [trace ./traces/amptjp.rep, line 6]: Payload (0x800000240:0x800001237) lies outside heap (Ox800000000:0x800000a3f)

ERROR: mem sbrk failed. Ran out of memory...
ERROR [trace ./traces/needle.rep, line 95411]: mm_malloc failed.

m The error message is straightforward in most cases

= “garbled byte” means part of the payload returned to the user has
been overwritten by your allocator

= “out of memory” occurs when the memory is used very
inefficiently, or there are lost blocks
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Errors

m But most of the times...

$ ./mdriver

Using default tracefiles in ./traces/
Measuring performance with a cycle counter.
Processor clock rate ~= 2261.0 MHz

Segmentation fault

m Do “gdb mdriver” and “run” to find out which line segfaults

= Note that a segfault occurring at line 200 could actually be caused
by a bug on line 70
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Segfault

m To resolve a segfault, it is necessary to find the earliest
time things went wrong.

m One way to do this is to print the whole heap before/after
relevant functions

= Scroll up from the point of segfault and find the earliest operation
that makes the heap look wrong

= Sometimes this gives too much information, not all of which are
useful

m The heap checker can make this easier

= Checks violation of invariants (corruption of the heap)
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Heap Checker

m Once you’ve settled on a design, write the heap checker
that checks all the invariants of the particular design

m The checking should be detailed enough that the heap
check passes if and only if the heap is truly well-formed

m Call the heap checker before/after the major operations
whenever the heap should be well-formed

m Define macros to enable/disable it conveniently

i fdef DEBUG
#define CHECKHEAP(verbose) printf(" ", __func__); mm_checkheap(verbose);

#endif
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Invariants (non-exhaustive)

m Block level:
" Header and footer match
= Payload area is aligned

m List level:
= Next/prev pointers in consecutive free blocks are consistent
= Free list contains no allocated blocks
= All free blocks are in the free list
= No contiguous free blocks in memory (unless you defer coalescing)
= No cycles in the list (unless you use circular lists)
= Segregated list contains only blocks that belong to the size class

m Heap level:

" Prologue/Epilogue blocks are at specific locations (e.g. heap boundaries)
and have special size/alloc fields

= All blocks stay in between the heap boundaries

m And your own invariants (e.g. address order)
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Hare and Tortoise Algorithm

m Detects cycles in linked lists

m Set two pointers “hare” and “tortoise” to the beginning of
the list

m During each iteration, move the hare pointer forward two
nodes and move the tortoise forward one node. If they are
pointing to the same node after this, the list has a cycle.

m If the tortoise reaches the end of the list, there are no
cycles.

Tortoise Tortoise
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Other things to watch for

m Uninitialized pointers and/or memory

m Make sure mm_init() initializes everything
= |tis called by the driver between each iteration of every trace

= |f something is overlooked, you might be able to pass every single
trace file, but the complete driver test will fail
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Useful Tools

m Valgrind

= |llegal accesses, uninitialized values...

m GDB

= watch, rwatch, awatch
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Asking for help

m It can be hard for the TAs to debug your allocator, because
this is a more open-ended lab

m Before asking for help, ask yourself some questions:
= What part of which trace file triggers the error?
= Around the point of the error, what sequence of events do you expect?
= What part of the sequence already happened?

m If you can’t answer, it’s a good idea to gather more
information...
= How can you measure which step worked OK?
= printf, breakpoints, watchpoints...

1
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Asking for help

m Bring to us a detailed story, not just a “plot summary”

= “Allocations of size blah corrupt my heap after coalescing the
previous block at this line number...” is detailed

= “It segfaults” is not

m Most importantly: don’t hesitate to come to office hours if
you really need help
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Beyond Debugging: Error prevention

m Itis hard to write code that are completely correct the first
time, but certain practices can make your code less error-prone

m Plan what each function does before writing code
= Draw pictures when linked list is involved
= Consider edge cases when the block is at start/end of list

m Write pseudocode first
m Document your code as you write it
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Beyond Debugging: Version control

“I had 60 util points just 5 minutes ago!”
Save the allocator after each major progress
Most basic: copy files around using the cp command

Alternatively: keep different versions in separate c files,
and use “In —s mm-version-x.c mm.c” to start using a
particular version

m Or use git/svn/cvs...

= Make sure your repository is private if you use remote repos
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Optimization

m To achieve better performance, sometimes you would
want to tweak certain parameters.

"= Number of size classes, the separation of size classes, the amount
by which the heap is extended (CHUNKSIZE)...

m Itis better to write modular and encapsulated code so that

changing the parameters only requires changing a few lines
of code

= Use macros wisely
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Optimization

m When you hit a bottleneck, find which part is limiting your
performance

m A profiler is good for this kind of job

m To use gprof:
® Change the Makefile to add “-pg” to the compilation flag
= Run the driver. This will generate a file called gmon.out
= Run “gprof ./mdriver” to see the result
= Don’t forget to change the Makefile back
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Final Words

Start now, if not already

Come to office hours early

Write the heap checker well

Be prepared to start over several times

Before handing in, check:

= Does the header comment contain a detailed description of your
approach?

= |s the indentation correct? Any line over 80 chars? (go to autolab
to verify these)
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Questions?

m Good luck!
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