Carnegie Mellon

Debugging

15-213: Introduction to Computer Systems
Recitation 12: Monday, Nov. 9th, 2013

Yixun Xu
Section K



Carnegie Mellon

News

m Malloc Lab due Thursday Nov 14th



Carnegie Mellon

Errors

m Some errors are identified by the driver

$ ./mdriver

Using default tracefiles 1in ./traces/
Measuring performance with a cycle counter.
Processor clock rate ~= 2261.0 MHz

ERROR [trace ./traces/alaska.rep, line 44]: block 8 has 1 garbled byte, starting at byte 0
ERROR [trace ./traces/alaska.rep, line 48]: block 38 has 1 garbled byte, starting at byte ©

ERROR [trace ./traces/alaska.rep, line 6]: Payload address (Ox80000005b) not aligned to 8 bytes
ERROR [trace ./traces/amptjp.rep, line 5]: Payload address (Ox800000043) not aligned to 8 bytes
ERROR [trace ./traces/bash.rep, line 9]: Payload address (0x8000000d3) not aligned to 8 bytes

ERROR [trace ./traces/alaska.rep, line 7]: Payload (0x800000718:0x800000be9) lies outside heap (Ox800000000:0x800000717)
ERROR [trace ./traces/amptjp.rep, line 6]: Payload (0x800000240:0x800001237) lies outside heap (Ox800000000:0x800000a3f)

ERROR: mem sbrk failed. Ran out of memory...
ERROR [trace ./traces/needle.rep, line 95411]: mm_malloc failed.

m The error message is straightforward in most cases

= “garbled byte” means part of the payload returned to the user has
been overwritten by your allocator

= “out of memory” occurs when the memory is used very
inefficiently, or there are lost blocks



Carnegie Mellon

Errors

m But most of the times...

$ ./mdriver

Using default tracefiles in ./traces/
Measuring performance with a cycle counter.
Processor clock rate ~= 2261.0 MHz

Segmentation fault

m Do “gdb mdriver” and “run” to find out which line segfaults

= Note that a segfault occurring at line 200 could actually be caused
by a bug on line 70



Carnegie Mellon

Segfault

m To resolve a segfault, it is necessary to find the earliest
time things went wrong.

m One way to do this is to print the whole heap before/after
relevant functions

= Scroll up from the point of segfault and find the earliest operation
that makes the heap look wrong

= Sometimes this gives too much information, not all of which are
useful

m The heap checker can make this easier

= Checks violation of invariants (corruption of the heap)



Carnegie Mellon

Heap Checker

m Once you’ve settled on a design, write the heap checker
that checks all the invariants of the particular design

m The checking should be detailed enough that the heap
check passes if and only if the heap is truly well-formed

m Call the heap checker before/after the major operations
whenever the heap should be well-formed

m Define macros to enable/disable it conveniently

i fdef DEBUG
#define CHECKHEAP(verbose) printf(" ", __func__); mm_checkheap(verbose);

#endif



Carnegie Mellon

Invariants (non-exhaustive)

m Block level:
" Header and footer match
= Payload area is aligned

m List level:
= Next/prev pointers in consecutive free blocks are consistent
= Free list contains no allocated blocks
= All free blocks are in the free list
= No contiguous free blocks in memory (unless you defer coalescing)
= No cycles in the list (unless you use circular lists)
= Segregated list contains only blocks that belong to the size class

m Heap level:

" Prologue/Epilogue blocks are at specific locations (e.g. heap boundaries)
and have special size/alloc fields

= All blocks stay in between the heap boundaries

m And your own invariants (e.g. address order)



Carnegie Mellon

Hare and Tortoise Algorithm

m Detects cycles in linked lists

m Set two pointers “hare” and “tortoise” to the beginning of
the list

m During each iteration, move the hare pointer forward two
nodes and move the tortoise forward one node. If they are
pointing to the same node after this, the list has a cycle.

m If the tortoise reaches the end of the list, there are no
cycles.

Tortoise Tortoise

\
l/ PL_PLPL PP P I D B D B

Hare
Hare




Carnegie Mellon

Other things to watch for

m Uninitialized pointers and/or memory

m Make sure mm_init() initializes everything
= |tis called by the driver between each iteration of every trace

= |f something is overlooked, you might be able to pass every single
trace file, but the complete driver test will fail



Carnegie Mellon

Useful Tools

m Valgrind

= |llegal accesses, uninitialized values...

m GDB

= watch, rwatch, awatch

10



Carnegie Mellon

Asking for help

m It can be hard for the TAs to debug your allocator, because
this is a more open-ended lab

m Before asking for help, ask yourself some questions:
= What part of which trace file triggers the error?
= Around the point of the error, what sequence of events do you expect?
= What part of the sequence already happened?

m If you can’t answer, it’s a good idea to gather more
information...
= How can you measure which step worked OK?
= printf, breakpoints, watchpoints...

1



Carnegie Mellon

Asking for help

m Bring to us a detailed story, not just a “plot summary”

= “Allocations of size blah corrupt my heap after coalescing the
previous block at this line number...” is detailed

= “It segfaults” is not

m Most importantly: don’t hesitate to come to office hours if
you really need help

12



Carnegie Mellon

Beyond Debugging: Error prevention

m Itis hard to write code that are completely correct the first
time, but certain practices can make your code less error-prone

m Plan what each function does before writing code
= Draw pictures when linked list is involved
= Consider edge cases when the block is at start/end of list

m Write pseudocode first
m Document your code as you write it

13



Carnegie Mellon

Beyond Debugging: Version control

“I had 60 util points just 5 minutes ago!”
Save the allocator after each major progress
Most basic: copy files around using the cp command

Alternatively: keep different versions in separate c files,
and use “In —s mm-version-x.c mm.c” to start using a
particular version

m Or use git/svn/cvs...

= Make sure your repository is private if you use remote repos

14



Optimization

m To achieve better performance, sometimes you would
want to tweak certain parameters.

"= Number of size classes, the separation of size classes, the amount
by which the heap is extended (CHUNKSIZE)...

m Itis better to write modular and encapsulated code so that

changing the parameters only requires changing a few lines
of code

= Use macros wisely

15



Optimization

m When you hit a bottleneck, find which part is limiting your
performance

m A profiler is good for this kind of job

m To use gprof:
® Change the Makefile to add “-pg” to the compilation flag
= Run the driver. This will generate a file called gmon.out
= Run “gprof ./mdriver” to see the result
= Don’t forget to change the Makefile back

16



Carnegie Mellon

Final Words

Start now, if not already

Come to office hours early

Write the heap checker well

Be prepared to start over several times

Before handing in, check:

= Does the header comment contain a detailed description of your
approach?

= |s the indentation correct? Any line over 80 chars? (go to autolab
to verify these)

17



Carnegie Mellon

Questions?

m Good luck!

18



