
Carnegie Mellon

1

Debugging

15-213: Introduction to Computer Systems
Recitation 12: Monday, Nov. 9th, 2013

Yixun Xu
Section K



Carnegie Mellon

2

News

 Malloc Lab due Thursday Nov 14th



Carnegie Mellon

3

Errors

 Some errors are identified by the driver

 The error message is straightforward in most cases
 “garbled byte” means part of the payload returned to the user has 

been overwritten by your allocator

 “out of memory” occurs when the memory is used very 
inefficiently, or there are lost blocks



Carnegie Mellon

4

Errors

 But most of the times…

 Do “gdb mdriver” and “run” to find out which line segfaults
 Note that a segfault occurring at line 200 could actually be caused 

by a bug on line 70



Carnegie Mellon

5

Segfault

 To resolve a segfault, it is necessary to find the earliest 
time things went wrong.

 One way to do this is to print the whole heap before/after 
relevant functions
 Scroll up from the point of segfault and find the earliest operation 

that makes the heap look wrong

 Sometimes this gives too much information, not all of which are 
useful

 The heap checker can make this easier
 Checks violation of invariants (corruption of the heap)



Carnegie Mellon

6

Heap Checker

 Once you’ve settled on a design, write the heap checker 
that checks all the invariants of the particular design

 The checking should be detailed enough that the heap 
check passes if and only if the heap is truly well-formed

 Call the heap checker before/after the major operations 
whenever the heap should be well-formed

 Define macros to enable/disable it conveniently
 e.g.



Carnegie Mellon

7

Invariants (non-exhaustive)
 Block level:

 Header and footer match

 Payload area is aligned

 List level:
 Next/prev pointers in consecutive free blocks are consistent

 Free list contains no allocated blocks

 All free blocks are in the free list

 No contiguous free blocks in memory (unless you defer coalescing)

 No cycles in the list (unless you use circular lists)

 Segregated list contains only blocks that belong to the size class

 Heap level:
 Prologue/Epilogue blocks are at specific locations (e.g. heap boundaries) 

and have special size/alloc fields

 All blocks stay in between the heap boundaries

 And your own invariants (e.g. address order)



Carnegie Mellon

8

Hare and Tortoise Algorithm

 Detects cycles in linked lists

 Set two pointers “hare” and “tortoise” to the beginning of 
the list

 During each iteration, move the hare pointer forward two 
nodes and move the tortoise forward one node. If they are 
pointing to the same node after this, the list has a cycle.

 If the tortoise reaches the end of the list, there are no 
cycles. 



Carnegie Mellon

9

Other things to watch for

 Uninitialized pointers and/or memory

 Make sure mm_init() initializes everything
 It is called by the driver between each iteration of every trace

 If something is overlooked, you might be able to pass every single 
trace file, but the complete driver test will fail



Carnegie Mellon

10

Useful Tools

 Valgrind
 Illegal accesses, uninitialized values…

 GDB
 watch, rwatch, awatch



Carnegie Mellon

11

Asking for help

 It can be hard for the TAs to debug your allocator, because 
this is a more open-ended lab

 Before asking for help, ask yourself some questions:
 What part of which trace file triggers the error?

 Around the point of the error, what sequence of events do you expect?

 What part of the sequence already happened?

 If you can’t answer, it’s a good idea to gather more 
information…
 How can you measure which step worked OK?

 printf, breakpoints, watchpoints…



Carnegie Mellon

12

Asking for help

 Bring to us a detailed story, not just a “plot summary”
 “Allocations of size blah corrupt my heap after coalescing the 

previous block at this line number...” is detailed

 “It segfaults” is not

 Most importantly: don’t hesitate to come to office hours if 
you really need help



Carnegie Mellon

13

Beyond Debugging: Error prevention

 It is hard to write code that are completely correct the first 
time, but certain practices can make your code less error-prone

 Plan what each function does before writing code
 Draw pictures when linked list is involved

 Consider edge cases when the block is at start/end of list

 Write pseudocode first

 Document your code as you write it



Carnegie Mellon

14

Beyond Debugging: Version control

 “I had 60 util points just 5 minutes ago!”

 Save the allocator after each major progress

 Most basic: copy files around using the cp command

 Alternatively: keep different versions in separate c files, 
and use “ln –s mm-version-x.c mm.c” to start using a 
particular version

 Or use git/svn/cvs…
 Make sure your repository is private if you use remote repos



Carnegie Mellon

15

Optimization

 To achieve better performance, sometimes you would 
want to tweak certain parameters.
 Number of size classes, the separation of size classes, the amount 

by which the heap is extended (CHUNKSIZE)…

 It is better to write modular and encapsulated code so that 
changing the parameters only requires changing a few lines 
of code
 Use macros wisely



Carnegie Mellon

16

Optimization

 When you hit a bottleneck, find which part is limiting your 
performance

 A profiler is good for this kind of job

 To use gprof:
 Change the Makefile to add “-pg” to the compilation flag

 Run the driver. This will generate a file called gmon.out

 Run “gprof ./mdriver” to see the result

 Don’t forget to change the Makefile back



Carnegie Mellon

17

Final Words

 Start now, if not already

 Come to office hours early

 Write the heap checker well

 Be prepared to start over several times

 Before handing in, check:
 Does the header comment contain a detailed description of your 

approach?

 Is the indentation correct? Any line over 80 chars? (go to autolab
to verify these)



Carnegie Mellon

18

Questions?

 Good luck!


