Carnegie Mellon

Anita’s Super Awesome Recitation
slides

15/18-213: Introduction to Computer Systems
|/0 and Virtual Memory, 28 Oct.2013

lan Hartwig, Section E

Carnegie Mellon

Boring Stuff

m Shell Lab due THIS Thursday, 28 March 2013

= We will have more TAs at office hours this week to speed up the
queue

m Malloc Lab comes out this Thursday
= My favorite lab!
= Design and implement a memory allocator

m Pressing concerns?

Carnegie Mellon

Menu for Today

m Teensy Bit of Shell Lab
m |/O (with Pictures!)

m Virtual Memory

m Address Translation

m Extra: C Primer

Carnegie Mellon

Rubber Duck Debugging

“To use this process, a
programmer explains
code to an inanimate
object, such as a
rubber duck, with the
expectation that upon
reaching a piece of
incorrect code and
trying to explain it, the
programmer will
notice the error.”

Carnegie Mellon

About sigsuspend()

m For those of you who still need help with it...
= This site is pretty good

= “Figure 10.22. Protecting a critcal region from a signal” is a
really good example of how sigsuspend() works

Carnegie Mellon

m Four basic operations
= open()
= close()
= read()
= write()
m What’s a file descriptor?
= Returned by open()

= Some positive value, or -1 to denote error
= int fd = open(*/path/to/file”, O_RDONLY);

Carnegie Mellon

File Descriptors

m Every process starts with these 3 by default

= 0-STDIN

= 1-STDOUT

= 2 —STDERR
m Every process gets its own file descriptor table
m Forked processes share open file tables

m All processes share v-node tables
® Contains the stat structure with info about a file

Carnegie Mellon

Parent and Child After fork()

m Shamelessly stolen from lecture:

Descriptor table Open file table v-node table
[one table per process] [shared by all processes] [shared by all processes]

Parent _File A (terminal) -

fd 0 / — File access

fd 1 = File pos File size

fd 2 :

fd 3 refcnt=2 File type

fd 4 ~ : :
Child File B (disk) ,

o 7 // File access

fd 1 / File pos File size

fd 2 — File type

fd 3 :

a |

Carnegie Mellon

dup2() Super Relevant Example

m Use open() to open afile to m Call dup2(4,1)
redirect stdout = Copies fd entries
= shelllab: Done before exec in the = Cause fd=1 to refer to disk file
child process pointed at by fd=4
File A File A
stdin fd0 stdin fd 0
/
stdout fd 1 File pos stdout fd 1 \ File pos
stderr fd 2 stderr fd 2
fd 3 refent=1 43 refcnt=0
fdd |~ : da |~ :
\File B File B
File pos File pos
refcnt=1 refcnt=2

Carnegie Mellon

Magic Numbers are Gross

m If someone doesn’t know what your code does, these could
mean anything:
= 0—STDIN
= 1-STDOUT
= 2 —STDERR

m These are painfully obvious:
= STDIN_FILENO
= STDOUT_FILENO
" STDERR_FILENO

m Defined for you in <unistd.h>

10

All the Lies

m Up to now, we’ve asked you to believe a couple of lies:
= Each process has access to the entire system’s memory.

® The system has infinite memory.

" |nstructions have static addresses, even if you run the executable
in more than one process at once.

1"

All the Lies

m Up to now, we’ve asked you to believe a couple of lies:
= Each process has access to the entire system’s memory.

® The system has infinite memory.

" |nstructions have static addresses, even if you run the executable
in more than one process at once.

m How do we make this possible?
= Virtual Memory

12

VM: Problems with Direct Mapping

L] Qu estions to pon der: Direct Mapping Fragmentation

" How can we grow

processes safely? Process 1
1
" What to do about
fragmentation? Process 2
= How can we make large | Processs
contiguous chunks fit _
. Process 4
easier?
Process 5
1]
Process 6

13

Carnegie Mellon

How do we Solve These Problems?

m We are scientists (and engineers)...

Virtual memory

Process 1

Physical memory

mapping <)

| 1

Virtual memory

|

Process n

14

Carnegie Mellon

Virtual Memory

m ..Isthe Best Thing Ever™
= Demand paging
" Memory Management
" Protection

m Allows the illusion of infinite memory
= Kernel manages page faults

m Each process gets its own virtual address space
" Mapping is the heart of virtual memory

15

Carnegie Mellon

Enabling data structure: Page Table

m A page table is an array of page table entries (PTEs) that maps
virtual pages to physical pages
= Per-process kernel data structure in DRAM

Physical memory

Physical page (DRAM)
number or
Valid disk address / xi ; PPO
PTEO| 0 null // I
. e VP4 PP 3
1 —
0 Q.
1 — < _
0 null "L Virtual memory
0 o~ | <. (disk)
PTE 71 o« "~ AN VP 1
Memory resident \\ NN “r2
page table S REW
(DRAM) . VP 3
\\\ VP 4
VP 6
VP 7 "

Carnegie Mellon

VM of a Linux Process

-
Process-specific data \
Different for each < structs (ptables,
task and mm structs, kernel
process
stack) Kernel
g virtual
p , memory
) Physical memo
Identical for each a Y
process
Kernel code and data j
~
User stack \
%esp —>
\ 4
Memory mapped region
for shared libraries
Process
brk — 4 virtual
Runtime heap (malloc) memory
Uninitialized data (.bss)
Initialized data (.data)
0x08048000 (32) —_ Program text (.text)
0x00400000 (64)]
0

17

Carnegie Mellon

VM: Address Translations

Virtual address
n-1 p p-1 0
Page table
base register Virtual page number (VPN) Virtual page offset (VPO)
(PTBR)
Page table address Page table
for process
> Valid Physical page number (PPN)

Valid bit = 0:
page not in memory
(page fault)

m-1 4 p p-1 v 0
Physical page number (PPN) Physical page offset (PPO)

Physical address

18

Carnegie Mellon

Overview of a Hit

CPU Chip o
0 PTEA >
PTE
€
CPU LS VYT) Cachel
] PA | Memory
Data

19

Two-Level Page Table

Virtual
Level 1 Level 2 memory
page table page tables
VP 0
PTE O [o
VP 1023
PTE VP 1024
PTE 2 (null) PTE 1023
PTE 3 (null)
VP 2047
PTE 4 (null) PTE O
PTE 5 (null)
PTE 7 (null) Gap
PTE 8 >
1023 null
(1K-9) PTEs
null PTEs PTE 1023 1023
unallocated
pages
32 bit addresses, 4KB pages, 4-byte PTEs VP 9215

Carnegie Mellon

20

Carnegie Mellon

Translating w/ a k-level Page Table

VIRTUAL ADDRESS
n-1 o-1 0
, VPN 1 , VPN?2 . VPNKk VPO
%r_/
Level 1 Level 2 Level k
page table page table page table
" i » PPN }—I
1 A 4 p-1 \ 4 0
PPN PPO

PHYSICAL ADDRESS

21

Carnegie Mellon

But Memory Accesses are Slow

m At least 2 memory accesses

= Fetch page-table entry (PTE) from memory
" Then fetch data from memory

m In x86, 3 memory accesses

= Page directory, page table, physical memory
m In x86_64, 4 level page-mapping system
m What should we do?

= Please don’t say insert a level of “indirection”

22

Carnegie Mellon

Translation Lookaside Buffer (TLB)

m Super fast hardware cache of PTEs

m |dea: Locality exists between memory accesses
= Typically access nearby memory
= Usually on the same page as current data
= Arrays with loops

= Program instructions

23

VM: Translations w/ TLB and Tables

Page table
base register
(PTBR)

Page table address
for process

TLB Hit:
Fetch straight
from TLB

Virtual address
n-1 p-1
Virtual page number (VPN) Virtual page offset (VPO)
Page table
Valid Physical page number (PPN)
—
TLB Miss:
Do a page walk
to fetch the entry
v m-1 p-1 v
> Physical page number (PPN) Physical page offset (PPO)
Physical address

Carnegie Mellon

24

Carnegie Mellon

Overview of a TLB Hit

CPU Chip

TLB
e PTE
VPN 0
VA PA
> >
CPU MMU 0 Cache/
] Memory

Data

25

Carnegie Mellon

Overview of a TLB Miss

PU Chi
GIAGie TLB o
(2 PTE
VPN
VA PTEA
‘>
CPU MMU > Cache/
1 3 s| Memory
Data

26

Carnegie Mellon

Tutorial: Virtual Address Translation

m Addressing

= 32 bit virtual address
= 32 bit physical address = 10 Eit page diLeICtOF(:/ index
® 10 bit page table index

= 12 bit offset

m TLB
" Direct Mapped

m Paging

= Pagesize=4kb

= 4 entries
TLB Tag TLB Index
: TLBT »— TLBI —»
«— PDI > PTI >< VPO/PPO ——
Page Directory Index Page Table Index Virtual/Physical

Page Offset

27

Carnegie Mellon

Tutorial: Address Translation Hit

. TLBT >«— TLBl —> < VPO ”

3ATAE | o FO0

m-m

SATAE SFT7F7

> —>

0
1
m Always access TLB first 2

28

Carnegie Mellon

Tutorial: Address Translation Hit

v

“ TLBT »«— TLBI —> < VPO

3ATAE | o FO0

m-m

SATAE SFT7F7

> L— ‘
VPO and PPO are always the
same!
v
5F7F7 | FOO
: PPN > PPO >

Physical Page Number Physical Page Offset

29

Carnegie Mellon

Tutorial: Address Translation Miss

TLBT »«— TLBI —> <« VPO

3BSAC | 3 BEE

3BBAC DEAD 0

o TLB Miss! Do page walk

30

Tutorial: Address Translation Miss

Carnegie Mellon

«— PDI > < PTI > VPO

Page Directory Page Table Valid
Index Address

0x3B8 0xFAFF8034 1
0x3B9

v

31

Carnegie Mellon

Tutorial: Address Translation Miss

3B8 2B3 BEE
«— PDI > PTI > VPO >
OxFAFF8034
-m
0x3B8 OxFAFF8034
0x3B9 .. OxFAFF9034

PTI_|_PPN_| Valid |

32

Carnegie Mellon

Tutorial: Address Translation Miss

PTI = VPO

Page Table Valid
Index

0x2B2 e e
0x2B3 0x2D00D 1

33

Carnegie Mellon

Tutorial: Address Translation Miss

A
v

v
=/
v
A

PTI VPO

v

PTI | PPN | Valid

> (0x2B3 0x2D00D :
2D00D | BEE
: PPN - PPO .

Physical Page Number Physical Page Offset

34

Carnegie Mellon

Translation Macro Exercise

m 32 bit address: 10 bit VPN1, 10 bit VPN2, 12 bit VPO
m 4KB pages
m Define the following function like macros:

= Page align

#define PAGE ALIGN (v_addr)

= Gets VPN1/VPN2 as unsigned int from virtual address
#define VPNI (v_addr)
#define VPN2 (v_addr)

= Gets VPO as unsigned int from virtual address
#define VPO (v_addr)

= (Calculates the address of the page directory index
#define PDEA (pd addr, v_addr)

" (Calculate address of page table entry
#define PTEA (pd addr, v_addr)

" Calculate physical address
#define PA(pd addr, v_addr)

35

Carnegie Mellon

Translation Macro Solution

m 32 bit address: 10 bit VPN1, 10 bit VPN2, 12 bit VPO
m 4KB pages
m Define the following function like macros:

= Page align

#define PAGE ALIGN(v_addr) ((unsigned int) v addr & ~0xfff)

" Gets VPN1/VPN2 as unsigned int from virtual address

#define VPNl (v_addr) ((unsigned int) (((v_addr)>>22)&0x3ff))
#define VPN2 (v_addr) ((unsigned int) (((v_addr)>>12)&0x3ff))

= Gets VPO as unsigned int from virtual address

#define VPO (v _addr) ((unsigned int) ((v_addr)&0xfff))

= (Calculates the address of the page directory index

#define PDEA (pd addr, v addr) (((void **)pd addr)+VPNI (v_addr))

" (Calculate address of page table entry
#define PTEA (pd addr, v_addr)
(((void **)PAGE ALIGN (*PDEA (pd addr,v addr)))+VPN2 (v_addr))
" Calculate physical address
#define PA(pd addr, v_addr)
(((PAGE ALIGN (*PTEA (pd addr,v addr)))) | VPO(v_addr))

36

Carnegie Mellon

Extra Stuff

m For next week, or for your enjoyment

37

Carnegie Mellon

All the C!

“Saving you from malloc misery...”
Basics

Useful C Stuff
Debugging

Brian W. Kernighan and Dennis M. Ritchie,
The C Programming Language, Second Edition,
Prentice Hall, 1988

38

Carnegie Mellon

C and Pointer Basics

m Statically allocated arrays:
" int prices[100];
" Getting rid of magic numbers:
» int prices[NUMITEMS];

m Dynamically allocated arrays:
" int *prices?2 = (int *) malloc(sizeof (int) * wvar);
m Which is valid:
" prices2 = prices;
" prices = prices2?;
m The & operator:
" gprices[1l] isthesameas prices+l1
m Function Pointer:
" int (*fun) ();

® Pointer to function returning int

39

Carnegie Mellon

Peeling the Onion (K&R p.101)

m char **argv

" argv: pointer to a pointer to a char
m int (*daytab) [13]

= daytab: pointer to array[13] of int
m 1int *daytab[1l3]

= daytab: array[13] of pointer to int
m char (*(*x())[]) ()

= x: function returning pointer to array[] of pointer to function returning
char

m char (*(*x[3]) ()) [3]
= x: array[3] of pointer to function returning pointer to array[5] of char
m Takeaway

" There is an algorithm to decode this (see K&R p. 101)
= Always use parenthesis!!
= Typedef

40

Carnegie Mellon

Why Typedefs?

m For convenience and readable code

m Example:

" typedef struct
{

int x;
int y;
} point;
m Function Pointer example:
" typedef int (*ptZ2Func) (int, 1int);

" pt2Func isa pointer to a function that takes 2 int arguments and
returns an int

4

Carnegie Mellon

Macros are Cool

m CPreprocessor looks at macros in the preprocessing step
of compilation
m Use #define to avoid magic numbers:
" #define TRIALS 100
m Function like macros — short and heavily used code
snippets
" #define GET BYTE ONE (x) ((x) & Oxff)
" #define GET BYTE TWO(x) (((x) >> 8) & Oxff)

m Also look at inline functions (example prototype):
" inline int fun(int a, int b)

= Requests compiler to insert assembly of max wherever a call to
max is made

m Both useful for malloc lab

42

Carnegie Mellon

Debugging — Favorite Methods

m Using the DEBUG flag:
" #define DEBUG

#ifdef DEBUG
. // debugging print statements, etc.
fendif
m Compiling (if you want to debug):
" gcc -DDEBUG foo.c —-o foo
m Using assert
" assert (posvar > 0);

B man 3 assert

m Compiling (if you want to turn off asserts):
" gcc -DNDEBUG foo.c —-o foo

43

Carnegie Mellon

Debugging — Favorite Methods

m Using printf, assert, etc only in debug mode:

m #define DEBUG -or- //#define DEBUG

#ifdef DEBUG
define dbg printf(...) printf(__VA ARGS)
define dbg assert(...) assert(VA ARGS)
define dbg(...) __VA_ARGS

#else
define dbg printf(...)
define dbg assert(...)
define dbg(...)

#endif

44

Carnegie Mellon

Little Things

m Usage messages

= Putting this in is a good habit — allows you to add features while
keeping the user up to date

" man —h
m fopen/fclose
= Always error check!
m malloc()
" Error check
" Free everything you allocate
m Global variables
" Namespace pollution
" |f you must, make them private:
= static 1nt foo;

45

Carnegie Mellon

Questions and References Slide

Rubber Duck 1
Rubber Duck Debugging on Wiki

Good sigsuspend() reference

Indirection on Wiki

Pictures stolen from lecture slides
Stole from 15-410 Virtual Memory Slides

" Lectures reside here
= BTW, Prof. Eckhardt is super cool

46

