15-213 Recitation A
Final Exam Review Session

int main() {
if (fork() == 0) {
printf("a");

}
else {
printf("b");
waitpid(-1, NULL, ©);
}
printf("c");
exit(0);

}

What are the possible outputs of this code? (You may assume that all processes and
function calls complete successfully.)

Note in case you talk this over with classmates or look at other slides: this question is subtly different from the one the other
sections are doing.

based on Spring 2011, exam 2

Marjorie
based on Spring 2011, exam 2

Problem 4. (9 points):

from Fall 2010, exam 2

Signals. Consider the following three different snippets of C code. Assume that all functions and procedures
return correctly and that all variables are declared and initialized properly. Also, assume that an arbitrary
number of SIGINT signals, and only SIGINT signals, can be sent to the code snippets randomly from some

external source.

For each code snippet, circle the value(s) of i that could possibly be printed by the printf command at
the end of each program. Careful: There may be more than one correct answer for each question. Circle all

the answers that could be correct.

Code Snippet 1:

int i = 0;

void handler(int sig) {
i=0;

}

int main() {
int j;
signal (SIGINT, handler);
for (3=0; j < 100; j++) {
i++;
sleep(l);

}
printf("i = &d\n", 1i);
exit(0);

1. Circle possible values of i
printed by snippet 1:

1.0
2.1
3. 50
4. 100
5. 101

6. Terminates with no output.

Code Snippet 2:

int 1 = 0;

void handler(int sig) {
i=0;

}

int main () {

int j;

sigset_t s;

signal (SIGINT, handler);

/+ Assume that s has been
initialized and declared
properly for SIGINT x/

sigprocmask(SIG_BLOCK, &s, 0);

for (3=0; j < 100; j++) {

i++;
sleep(1l);

}

sigprocmask(SIG_UNBLOCK, &s, 0);

printf("i = %d\n", 1i);

exit(0);

2. Circle possible values of i
printed by snippet 2:

1.0
2.1
3. 50
4. 100
5. 101

6. Terminates with no output.

Page 7 of 15

Code Snippet 3:
int i = 0;

void handler(int sig) {
i=0;
sleep(l);

}

int main () {
int j;
sigset_t s;
/+* Assume that s has been

initialized and declared
properly for SIGINT x/

sigprocmask(SIG_BLOCK, &s, 0);
signal (SIGINT, handler);
for (j=0; j < 100; j++) {
i++;
sleep(l);

}

printf("i = %d\n", 1i);
sigprocmask(SIG_UNBLOCK, &s, 0);
exit(0);

3. Circle possible values of i
printed by snippet 3:

1.0
2.1
3. 50
4. 100
5. 101

6. Terminates with no output.

Marjorie
from Fall 2010, exam 2

from Fall 2010, final exam

Problem 8. (6 points):

Processes vs. threads. This problem tests your understanding of the some of the important differences
between processes and threads. Consider the following C program:

#include "csapp.h" int main()
{
/* Global variables */ int i;
int cnt; pthread_t tid[2];

sem_t mutex;
sem_init(&mutex, 0, 1); /* mutex=1 */

/* Helper function */ /* Processes */

void *incr(void *vargp) cnt = 0;

{ for (i=0; i<2; i++) {
P(&mutex); incr (NULL) ;
cnt++; if (fork() == 0) {
V(&mutex) ; incr (NULL) ;
return NULL; exit(0);

} }

}

for (i=0; i<2; i++)
wait (NULL);
printf ("Procs: cnt = %d\n", cnt);

/* Threads */
cnt = 0;
for (i=0; i<2; i++) {
incr (NULL) ;
pthread create(&tid[i], NULL, incr, NULL);
}
for (i=0; i<2; i++)
pthread_join(tid[i], NULL);
printf ("Threads: cnt = %d\n", cnt);

exit(0);

A. What is the output of this program?

Procs: cnt =

Threads: cnt

)

Page 17 of 22

Marjorie
Accepted set by Marjorie

Marjorie
from Fall 2010, final exam

Marjorie
None set by Marjorie

from Spring 2008, exam 2

Problem 4. (12 points):

The following problem concerns virtual memory and the way virtual addresses are translated into physical
addresses. Below are the specifications of the system on which the translation occurs.

e The system is a 32-bit machine - words are 4 bytes.

e Memory is byte addressable.

e The maximum size of a virtual address space is 4GB.

e The system is configured with 64MB of physical memory.

e The page size is 4KB.

e The system uses a two-level page tables. Tables at both levels are 4096 bytes (1 page) and entries in

both tables are 4 bytes as shown below.

In this problem, you are given parts of a memory dump of this system running 2 processes. In each part
of this question, one of the processes will issue a single memory operation (read or write of one byte) to
a single virtual address (as indicated in each part). Your job is to figure out which physical addresses are
accessed by the process if any, or determine if an error is encountered.

Entries in the first and second level tables have in their low-order bits flags denoting various access permis-
sions.

31 2 1 0
| Page Table Base Address ‘ | P |
Page Directory Entry
| Page Address ‘ | U | w | P |
Page Table Entry

e P=1 = Present
e W =1 = Writable

e U =1 = User-mode

The contents of relevant sections of memory is shown on the next page. All numbers are given in hexadec-
imal.

Page 6 of 13

Marjorie
from Spring 2008, exam 2

Address

Contents

001ACO021

07693003

001AC084

00142003

0021A020

0481C001

0021A080

04A95001

0021A2FF

06128001

0021A300

05711001

0021ABFC

05176001

0021AC00

001ACO001

0021B020

01FAC9DA

0021B080

052DB001

0021B2CO

0B2B36C2

0021B2FF

05A11001

0021B300

01FCFO001

0021BBFC

06213001

0021BCOO

001AC001

01FCFO021

00382003

0481C048

0523A005

04295048

048B8005

04A95120

07D6A005

051760F0

0E33F007

051763C0

08BF1007

052DB04A

09262006

052DB128

0D718006

05711021

00113003

05A110F0

01133007

061280F0

0A114007

0614504A

0B183006

062133C0

052F1007

For the purposes of this problem, omitted entries have contents = 0.

Page 7 of 13

from Fall 2011, final exam

Problem 11. (9 points):

Synchronization. This problem is about using semaphores to synchronize access to a shared bounded FIFO
queue in a producer/consumer system with an arbitrary number of producers and consumers.

e The queue is initially empty and has a capacity of 10 data items.
e Producer threads call the insert function to insert an item onto the rear of the queue.
e Consumer threads call the remove function to remove an item from the front of the queue.

e The system uses three semaphores: mutex, items, and slots.
Your task is to use P and V semaphore operations to correctly synchronize access to the queue.

A. What is the initial value of each semaphore?

mutex =

items
slots =

B. Add the appropriate P and V operations to the psuedo-code for the insert and remove functions:

void insert (int item) int remove ()
{ {
/+ Insert sem ops here =/ /* Insert sem ops here x/
add_item (item) ; item = remove_item();
/+ Insert sem ops here =/ /+ Insert sem ops here x/
} return item;

Page 17 of 17

Marjorie
from Fall 2011, final exam

	process-control.pdf
	signals.pdf
	process-thread.pdf
	VA.pdf
	mutex.pdf
	Untitled

