
15#213&Recitation&A&
Final&Exam&Review&Session&

&
&
int$main()${$
$ if$(fork()$==$0)${$
$ $ printf("a");$
$ }$
$ else${$
$ $ printf("b");$
$ $ waitpid(:1,$NULL,$0);$
$ }$
$ printf("c");$
$ exit(0);$
}$
&
What&are&the&possible&outputs&of&this&code?&(You&may&assume&that&all&processes&and&
function&calls&complete&successfully.)&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
Note&in&case&you&talk&this&over&with&classmates&or&look&at&other&slides:&this&question&is&subtly&different&from&the&one&the&other&
sections&are&doing.&

Marjorie
based on Spring 2011, exam 2

Problem 4. (9 points):
Signals. Consider the following three different snippets of C code. Assume that all functions and procedures
return correctly and that all variables are declared and initialized properly. Also, assume that an arbitrary
number of SIGINT signals, and only SIGINT signals, can be sent to the code snippets randomly from some
external source.

For each code snippet, circle the value(s) of i that could possibly be printed by the printf command at
the end of each program. Careful: There may be more than one correct answer for each question. Circle all
the answers that could be correct.

Code Snippet 1:

int i = 0;

void handler(int sig) {
i = 0;

}

int main() {
int j;

signal(SIGINT, handler);
for (j=0; j < 100; j++) {
i++;
sleep(1);

}
printf("i = %d\n", i);
exit(0);

}

Code Snippet 2:

int i = 0;

void handler(int sig) {
i = 0;

}

int main () {
int j;
sigset_t s;

signal(SIGINT, handler);

/* Assume that s has been
initialized and declared
properly for SIGINT */

sigprocmask(SIG_BLOCK, &s, 0);
for (j=0; j < 100; j++) {

i++;
sleep(1);

}
sigprocmask(SIG_UNBLOCK, &s, 0);
printf("i = %d\n", i);
exit(0);

}

Code Snippet 3:

int i = 0;

void handler(int sig) {
i = 0;
sleep(1);

}

int main () {
int j;
sigset_t s;

/* Assume that s has been
initialized and declared
properly for SIGINT */

sigprocmask(SIG_BLOCK, &s, 0);
signal(SIGINT, handler);
for (j=0; j < 100; j++) {

i++;
sleep(1);

}
printf("i = %d\n", i);
sigprocmask(SIG_UNBLOCK, &s, 0);
exit(0);

}

1. Circle possible values of i
printed by snippet 1:

1. 0

2. 1

3. 50

4. 100

5. 101

6. Terminates with no output.

2. Circle possible values of i
printed by snippet 2:

1. 0

2. 1

3. 50

4. 100

5. 101

6. Terminates with no output.

3. Circle possible values of i
printed by snippet 3:

1. 0

2. 1

3. 50

4. 100

5. 101

6. Terminates with no output.

Page 7 of 15

Marjorie
from Fall 2010, exam 2

Problem 8. (6 points):
Processes vs. threads. This problem tests your understanding of the some of the important differences
between processes and threads. Consider the following C program:

#include "csapp.h"

/* Global variables */
int cnt;
sem_t mutex;

/* Helper function */
void *incr(void *vargp)
{

P(&mutex);
cnt++;
V(&mutex);
return NULL;

}

int main()
{

int i;
pthread_t tid[2];

sem_init(&mutex, 0, 1); /* mutex=1 */

/* Processes */
cnt = 0;
for (i=0; i<2; i++) {

incr(NULL);
if (fork() == 0) {

incr(NULL);
exit(0);

}
}
for (i=0; i<2; i++)

wait(NULL);
printf("Procs: cnt = %d\n", cnt);

/* Threads */
cnt = 0;
for (i=0; i<2; i++) {

incr(NULL);
pthread_create(&tid[i], NULL, incr, NULL);

}
for (i=0; i<2; i++)

pthread_join(tid[i], NULL);
printf("Threads: cnt = %d\n", cnt);

exit(0);
}

A. What is the output of this program?

Procs: cnt = ___

Threads: cnt = ___

Page 17 of 22

Marjorie
Accepted set by Marjorie

Marjorie
from Fall 2010, final exam

Marjorie
None set by Marjorie

Problem 4. (12 points):
The following problem concerns virtual memory and the way virtual addresses are translated into physical
addresses. Below are the specifications of the system on which the translation occurs.

• The system is a 32-bit machine - words are 4 bytes.

• Memory is byte addressable.

• The maximum size of a virtual address space is 4GB.

• The system is configured with 64MB of physical memory.

• The page size is 4KB.

• The system uses a two-level page tables. Tables at both levels are 4096 bytes (1 page) and entries in
both tables are 4 bytes as shown below.

In this problem, you are given parts of a memory dump of this system running 2 processes. In each part
of this question, one of the processes will issue a single memory operation (read or write of one byte) to
a single virtual address (as indicated in each part). Your job is to figure out which physical addresses are
accessed by the process if any, or determine if an error is encountered.

Entries in the first and second level tables have in their low-order bits flags denoting various access permis-
sions.

31 2 1 0
Page Table Base Address P

Page Directory Entry
Page Address U W P

Page Table Entry

• P = 1⇒ Present

• W = 1⇒Writable

• U = 1⇒ User-mode

The contents of relevant sections of memory is shown on the next page. All numbers are given in hexadec-
imal.

Page 6 of 13

Marjorie
from Spring 2008, exam 2

Address Contents
001AC021 07693003
001AC084 00142003
0021A020 0481C001
0021A080 04A95001
0021A2FF 06128001
0021A300 05711001
0021ABFC 05176001
0021AC00 001AC001
0021B020 01FAC9DA
0021B080 052DB001
0021B2C0 0B2B36C2
0021B2FF 05A11001
0021B300 01FCF001
0021BBFC 06213001
0021BC00 001AC001
01FCF021 00382003
0481C048 0523A005
04A95048 048B8005
04A95120 07D6A005
051760F0 0E33F007
051763C0 08BF1007
052DB04A 09A62006
052DB128 0D718006
05711021 00113003
05A110F0 01133007
061280F0 0A114007
0614504A 0B183006
062133C0 052F1007

For the purposes of this problem, omitted entries have contents = 0.

Page 7 of 13

Problem 11. (9 points):

Synchronization. This problem is about using semaphores to synchronize access to a shared bounded FIFO
queue in a producer/consumer system with an arbitrary number of producers and consumers.

• The queue is initially empty and has a capacity of 10 data items.

• Producer threads call the insert function to insert an item onto the rear of the queue.

• Consumer threads call the remove function to remove an item from the front of the queue.

• The system uses three semaphores: mutex, items, and slots.

Your task is to use P and V semaphore operations to correctly synchronize access to the queue.

A. What is the initial value of each semaphore?

mutex = _______

items = _______

slots = _______

B. Add the appropriate P and V operations to the psuedo-code for the insert and remove functions:

void insert(int item)
{

/* Insert sem ops here */

add_item(item);
/* Insert sem ops here */

}

int remove()
{

/* Insert sem ops here */

item = remove_item();
/* Insert sem ops here */

return item;
}

Page 17 of 17

Marjorie
from Fall 2011, final exam

	process-control.pdf
	signals.pdf
	process-thread.pdf
	VA.pdf
	mutex.pdf
	Untitled

