
Andrew login ID:

Full Name:

CS 15-213, Spring 2002

Final Exam
May 9, 2002

Instructions:

� Make sure that your exam is not missing any sheets, then write your full name and Andrew login ID
on the front.

� Write your answers in the space provided below the problem. If you make a mess, clearly indicate
your final answer.

� The exam has a maximum score of points.

� The problems are of varying difficulty. The point value of each problem is indicated. Pile up the easy
points quickly and then come back to the harder problems.

� This exam is OPEN BOOK. You may use any books or notes you like. You may use a calculator, but
no laptops or other wireless devices. Good luck!

1 (7):

2 (9):

3 (8):

4 (8):

5 (15):

6 (10):

7 (9):

8 (5):

9 (8):

10 (9):

TOTAL (86):

Page 1 of 22

Problem 1. (7 points):
In this problem, you will complete a function that converts float to int without explicit use of a conversion
operator.
The following information may prove useful.

� The IEEE float type uses 1 bit for sign, 8 bits for the exponent (with a bias of 127), and 23 bits for the
fraction.

� Your function should truncate floating pointing numbers (i.e., round toward zero). For example:
���������

,
�
	 ���
� �
	 .

� Since you are writing the conversion function, you may not use the built-in type conversion facilities of
C. You may not use relational operators (<, ==, and so on) taking floating point arguments. Keep in mind
that C does not allow the use of bitwise operators on floating point types.

� In the event of overflow or infinity, you should return the largest (INT MAX) or smallest (INT MIN)
representable integer, as appropriate.

� NaN (not a number) should be converted to 0.

The following is the framework for the conversion function. Fill in the blank lines with an appropriate C
expression.

union conv {
float f;
unsigned long u;

};

int float2int(float f)
{

union conv conv;
unsigned long u;
int sign,exp,frac,shift;

conv.f = f;
u = conv.u;

if (____________________)
sign = -1;

else
sign = 1;

exp = _________________________ ;
frac = ________________________ ;

if (____________________) /* zero or denormalized */
return 0;

if (____________________) {
if (__________________) /* NaN */

return 0;
else if (sign > 0) /* +Inf */

return INT_MAX;
else

return INT_MIN;
}

Page 2 of 22

/* Add implicit 1.x in normalized representation */
frac |= 1 << 23;

/* compute decimal point position, i.e., total right shift needed */
shift = _______________________ ;

if (shift > 0) {
if (shift > 32)

return 0;
else

return sign * (frac >> shift);
} else {
if (-shift > 32) {

if (sign > 0)
return INT_MAX;

else
return INT_MIN;

}
return sign * (frac << -shift);

}
}

Page 3 of 22

Problem 2. (9 points):

Part 1

Given the assembly for the function mystery1, fill in the corresponding function in C.

<mystery1>:
push %ebp
mov %esp,%ebp
push %ebx
sub $0x18,%esp
movl $0x0,%ecx
movl $0x0,%ebx

.L1
cmp 0xc(%ebp),%ebx
jl .L2
jmp .L3

.L2
mov 0x8(%ebp),%eax
mov (%eax,%ebx,4),%edx
add %edx, %ecx
incl %ebx
jmp .L1

.L3
mov %ecx,%eax
pop %ebx
mov %ebp,%esp
pop %ebp
ret

int mystery1(int A[], int n) {
int i;

int mystery = _______; % answer: 0

for (_________________________________) % answer: i = 0; i < n; i++
{

_________________________________; % answer: mystery += A[i];
}

return(________________); % answer: mystery
}

Page 4 of 22

Part 2

<mystery2>:
push %ebp
mov %esp,%ebp
sub $0x18,%esp
mov 0x8(%ebp),%edx
mov 0xc(%ebp), %ecx
cmp %ecx, %edx
jge .L1
add $0xfffffff8,%esp
sub %edx,%ecx
push %ecx
push %edx
call mystery2
add $0x10,%esp
jmp .L3

.L1
cmp %ecx, %edx
jle .L2
add $0xfffffff8,%esp
push %ecx
sub %ecx,%edx
push %edx
call mystery2
add $0x10,%esp
jmp .L3

.L2
mov %edx,%eax

.L3
mov %ebp,%esp
pop %ebp
ret

A. What would the following function call return?

x = mystery2(6, 4);
x = _________________________________ % answer: 2

B. What is the mystery2 function computing?

Page 5 of 22

Problem 3. (8 points):
This question is testing your understanding of the stack frame structure.

Part I The following memory image embeds a binary tree with root node at 0x804961c. Please draw the
logical organization of the tree in the same format as the shown example. Please indicate the address and key
value (in hexidecimal) of all the tree nodes and the pointers from parent nodes to child nodes. The declaration
of the tree node structure is as follows.

struct tree_node {
int key;
struct tree_node * left;
struct tree_Node * right;

};

/* address of the root node */
tree_node * root;

Key: 45
Addr: 0x8049a4c

Addr: 0x8049a6c
Key: 10

Addr: 0x8049a34
Key: 70

Example binary tree

Memory image:
<address> <value>
0x80495f8: 0x0000000c
0x80495fc: 0x00000000
0x8049600: 0x00000000
0x8049604: 0x0000001f
0x8049608: 0x080495f8
0x804960c: 0x08049610
0x8049610: 0x00000022
0x8049614: 0x00000000
0x8049618: 0x00000000
0x804961c: 0x00000037
0x8049620: 0x08049604
0x8049624: 0x08049628
0x8049628: 0x0000003c
0x804962c: 0x00000000
0x8049630: 0x08049634
0x8049634: 0x0000004e
0x8049638: 0x00000000
0x804963c: 0x00000000
...

Page 6 of 22

Part II The following function traverses the binary tree to locate the node with a given key value.

1: struct tree_node * search(struct tree_node * node,
2: int value)
3: {
4: if (node->key == value)
5: return node;
6: else if (node->key > value) {
7: if (node->left == NULL)
8: return NULL;
9: else return search(node->left, value);
10: }
11: else {
12: if (node->right == NULL)
13: return NULL;
14: else return search(node->right, value);
15: }
16: }

Suppose we call search(root, 0x4e). Fill in the blanks the value of these memory location so that
it shows the stack when the execution is at line 5. (More space than needed is provided.) You can assume
that the stack stores only arguments, return address, and the ebp register value. The value of ebp is
0xbffff880 when the program calls the function. Write ”rtn addr” for return addresses.

Address Value

0xbffff800 0x4e
0xbffff7fc 0x804961c
0xbffff7f8 rtn addr
0xbffff7f4
0xbffff7f0
0xbffff7ec
0xbffff7e8
0xbffff7e4
0xbffff7e0
0xbffff7dc
0xbffff7d8
0xbffff7d4
0xbffff7d0
0xbffff7cc
0xbffff7c8
0xbffff7c4

Page 7 of 22

Problem 4. (8 points):
In this problem, you will compare the performance of direct mapped and � -way associative caches for the
initialization of 2-dimensional array of data structures. Both caches have a size of ����� � bytes. The direct
mapped cache has

� � � -byte lines while the � -way associative cache has 	 � -byte lines.

You are given the following definitions

typedef struct{
float* position;
float velocity[3];
float forces[3];
particle_t *adjacent;

} particle_t;

particle_t cloth[32][32];
register int i, j, k;

Also assume that

� sizeof(* float) and sizeof(* particle_t) = 4

� sizeof(float) = 4

� surface begins at memory address 0

� Both caches are initially empty

� The array is stored in row-major order

� Variables i,j,k are stored in registers and any access to these variables does not cause a cache miss

A. What fraction of the writes in the following code will result in a miss in the direct mapped cache?

for (i = 0; i < 32; i ++)
{

for (j = 0; j < 32; j ++)
{

for(k = 0; k < 3; k ++)
{

cloth[i][j].forces[k] = 0.;
}

}
}

Miss rate for writes to surface:____________%

B. Using code in part A, what fraction of the writes will result in a miss in the 4-way associative cache?

Miss rate for writes to surface: ____________%

Page 8 of 22

C. What fraction of the writes in the following code will result in a miss in the direct mapped cache?

for (i = 0; i < 32; i ++)
{

for (j = 0; j < 32; j ++)
{

for (k = 0; k < 16; k ++)
{

cloth[j][i].forces[k] = 0;
}

}
}

Miss rate for writes to surface:____________%

D. Using code in part C, what fraction of the writes will result in a miss in the 4-way associative cache?

Miss rate for writes to surface:____________%

Page 9 of 22

Problem 5. (15 points):
The following problem concerns the way virtual addresses are translated into physical addresses.

� The memory is byte addressable, and memory accesses are to 1-byte � not 4-byte � words.

� Virtual addresses are 18 bits wide.

� Physical addresses are 12 bits wide.

� The page size is 512 bytes.

� The TLB is 8-way set associative with 16 total entries.

� The cache is 2-way set associative, with a 4-byte line size and 32 total entries.

In the following tables, all numbers are given in hexadecimal. The contents of the TLB and the page table
for the first 32 pages, and the cache are as follows:

TLB
Index Tag PPN Valid

0 55 6 0
48 F 1
00 A 0
32 9 1
6A 3 1
56 1 0
60 4 1
78 9 0

1 71 5 1
31 A 1
53 F 0
87 8 0
51 D 0
39 E 1
43 B 0
73 2 1

Page 10 of 22

Page Table
VPN PPN Valid VPN PPN Valid

000 7 0 010 1 0
001 5 0 011 3 0
002 1 1 012 3 0
003 5 0 013 0 0
004 0 0 014 6 1
005 5 0 015 5 0
006 2 0 016 7 0
007 4 1 017 2 1
008 7 0 018 0 0
009 2 0 019 2 0
00A 3 0 01A 1 0
00B 0 0 01B 3 0
00C 0 0 01C 2 0
00D 3 0 01D 7 0
00E 4 0 01E 5 1
00F 7 1 01F 0 0

2-way Set Associative Cache
Index Tag Valid Byte 0 Byte 1 Byte 2 Byte 3 Tag Valid Byte 0 Byte 1 Byte 2 Byte 3

0 7A 1 09 EE 12 64 00 0 99 04 03 48
1 02 0 60 17 18 19 7F 1 FF BC 0B 37
2 55 1 30 EB C2 0D 0B 0 8F E2 05 BD
3 07 1 03 04 05 06 5D 1 7A 08 03 22

Page 11 of 22

Part 1

1. The box below shows the format of a virtual address. Indicate (by labeling the diagram) the fields (if
they exist) that would be used to determine the following: (If a field doesn’t exist, don’t draw it on
the diagram.)

VPO The virtual page offset
VPN The virtual page number
TLBI The TLB index
TLBT The TLB tag

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

2. The box below shows the format of a physical address. Indicate (by labeling the diagram) the fields
that would be used to determine the following:

PPO The physical page offset
PPN The physical page number
CO The Cache Block Offset
CI The Cache Index
CT The Cache Tag

11 10 9 8 7 6 5 4 3 2 1 0

Page 12 of 22

Part 2

For the given virtual addresses, indicate the TLB entry accessed and the physical address. Indicate whether
the TLB misses and whether a page fault occurs.

If there is a cache miss, enter “-” for “Cache Byte Returned.” If there is a page fault, enter “-” for “PPN”
and leave part C blank.

Virtual address: 0x1A9F4

1. Virtual address format (one bit per box)
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

2. Address translation

Parameter Value

VPN 0x
TLB Index 0x
TLB Tag 0x
TLB Hit? (Y/N)
Page Fault? (Y/N)
PPN 0x

3. Physical address format (one bit per box)
11 10 9 8 7 6 5 4 3 2 1 0

4. Physical memory reference

Parameter Value

Block Offset 0x
Cache Index 0x
Cache Tag 0x
Cache Hit? (Y/N)
Value of Cache Byte Returned 0x

Page 13 of 22

Problem 6. (10 points):
This question deals with various aspects of the implementation of dynamic memory allocators.

Memory utilization

Suppose your memory allocator uses a simple implicit list, and each block in the heap has a 1 word header
and footer. Assume that the heap has a unused word at the start of the heap to enforce double-word alignment,
followed by a prologue block consisting of only a header and footer. At the end of the heap is a 1 word epilogue
header. The allocator’s minimum allocation unit is 8 bytes. The total size of the heap is 2048 bytes.

A. If the heap is full (this means a request of malloc(1) will fail), what is worst case memory utilization of
the heap?

B. Briefly (no more than 2 sentences), describe the difference between internal and external fragmentation.

Free list strategies

Consider a heap with � blocks, where � ��� are allocated. For the following questions, express your answer
in � -notation:

A. What is the worst case running time of first fit allocation with explicit free lists?

B. What is the worst case running time of first fit allocation with implicit free lists?

C. What is the worst case running time of best fit allocation with explicit free lists?

Coalescing strategies

Immediate coalescing is the strategy we have seen where a block is coalesced with its neighbor(s) immediately
after it is freed. Another possible strategy is lazy or deferred coalescing, where free blocks are not coalesced
immediately. Usually, coalescing is done when a allocation request cannot be fulfilled.

For the following two questions, express your answer in � -notation. Borrowing from the previous section,
there are � blocks in the heap, where � ��� are allocated. Assume the allocator uses some form of explicit
free lists.

A. What is the worst case running time of coalescing using an immediate strategy?

B. What is the worst case running time of coalescing using a lazy strategy?

For the following situations, describe whether an allocator using immediate or lazy coalesing (coalescing done
when an allocation request fails) would be more appropriate. If the choice of coalescing strategy has negligible
performance impact, write “does not matter”.

D. The allocator allocates only two types of structures that have fixed sizes, and expects heavy reuse patterns.

Page 14 of 22

E. The allocator must operate in real time. This means the allocator makes hard performance guarantees
that its operations will not take more than some fixed specified amount of time.

F. The allocator will alternately allocate and free blocks where the next allocation request is 1/2 the size of
the last request.

Page 15 of 22

Problem 7. (9 points):

Part 1

Consider the C program below. (For space reasons, we are not checking error return codes, so assume that all
functions return normally.)

#include <stdio.h>
#include <pthread.h>

#define NTHREADS 20

void *thread(void *vargp)
{
static int cnt = 0;

cnt++;
printf("%d\n", cnt);

}

int main ()
{
int i;
pthread_t tid;

for(i = 0; i < NTHREADS; i++)
{
pthread_create(&tid, NULL, thread, NULL);

}

pthread_exit(NULL);

}

What are the maximal guarantees you can make about the output of the above program? Check all that apply.
Note: Checking all of the boxes implies that the output is

1
2
3
...
20

�
20 numbers will be printed.

�
The numbers lie in the range 1 through 20, inclusive.

�
There are no duplicate numbers printed.

�
The numbers will be printed in ascending order.

Page 16 of 22

Part 2

Using mutexes, modify the code to guarantee that the output of the program is

1
2
3
...
20

The numbers 1 through 20 printed sequentially in ascending order.
Here are the mutex operations:

int pthread_mutex_init(pthread_mutex *mutex, const pthread_mutexattr_t *mutexattr);
int pthread_mutex_lock(pthread_mutex_t *mutex));
int pthread_mutex_unlock(pthread_mutex_t *mutex));
int pthread_mutex_destroy(pthread_mutex_t *mutex));

Here is the code from the previous page. Make the appropriate additions.

#include <stdio.h>
#include <pthread.h>

#define NTHREADS 20

% answer: pthread_mutex mutex;

void *thread(void *vargp)
{

static int cnt = 0;

% answer: pthread_mutex_lock(&mutex);

cnt++;

printf("%d\n", cnt);

% answer: pthread_mutex_unlock(&mutex);

}

int main ()
{
int i;

pthread_t tid;

% pthread_mutex_init(&mutex, NULL);

for(i = 0; i < NTHREADS; i++)
{

pthread_create(&tid, NULL, thread, NULL);

}

pthread_exit(NULL);

% answer: pthread_mutex_destroy(&mutex); // not necessary at all...
}

Page 17 of 22

Problem 8. (5 points):
This problem tests your understanding of the file sharing between processes. Consider the following program.

1: int main()
2: {
3: int fd_x, fd_y, fd_z;
4:
5: fd_x = Open("file1", O_RDONLY);
6: if (Fork() == 0) {
7: fd_y = Open("file1", O_RDONLY);
8: ...
9: }
10: else {
11: fd_z = Open("file2", O_RDONLY);
12: Dup2(fd_z, fd_x);
13: }
14: ...
15: }

The following graph shows the kernel data structure after line 5 is executed. Please draw the kernel data
structure when the child process execution stops at line 8 and the parent stops at line 13. Add additional entries
to the tables if needed. Remember to update the refcnt field in the open file table. You can assume that

1. there is no error in opening the files, and

2. the value of fd x, fd y, and fd z are 2, 3, 3 respectively.

fd 0
fd 1
fd 2
fd 3

fd 0
fd 1
fd 2
fd 3

Parent’s table

Child’s table

File type

File access

Descriptor tables Open file table V−node table

File pos
refcnt = 1

File size

Page 18 of 22

Problem 9. (8 points):

Part 1

You have just been hired by a software company to complete some database software. You’ve been assigned
the task of writing the networking code that will allow server and client software to communicate. The database
software is designed to handle many simultaneous connections.
Both the server and client’s networking code need to be written. The server will be hosted on DEFAULT PORT
and it does not care which IP address on which it’s to be hosted. The connection backlog should be 10.
At the moment, you will only be testing the client’s code. Therefore, the client will only connect to the local
host (127.0.0.1) while testing.
The following function declarations may prove useful.

� int bind(int sockfd, struct sockaddr *addr, socklen t addrlen)

� int connect(int sockfd, struct sockaddr *addr, socklen t addrlen)

� int socket(int domain, int type, int protocol)

� int listen(int s, int backlog)

� int accept(int s, struct sockaddr *addr, socklen t addrlen)

� unsigned long int htonl(unsigned long int hostlong)

� unsigned short int htons(unsigned short int hostshort)

Page 19 of 22

A

The following is the framework for the server code you are required to write. Note that the function returns
a socket descriptor. Assume there are no errors and no error handling is needed.

int setup_server()
{

int fd;
struct sockaddr_in addr;
int len = sizeof(struct sockaddr);

fd = _______________________________________;

bzero(&addr, len);
addr.sin_family = AF_INET;

addr.sin_port = __________________________;

addr.sin_addr.s_addr = _____________________;

__;

__;

__;
}

Page 20 of 22

B

The following is your framework for the client code. Note that it also returns a socket descriptor. Again, no
error handling is needed.

int client_setup()
{

struct sockaddr addr;
int fd;

fd = _______________________________________;

addr.sin_family = AF_INET;

addr.sin_port = __________________________;

addr.sin_addr.s_addr = 0x___________________;

__;

__;
}

Part 2

Fill in a valid time ordering for the networking functions called by both the client and the server. Use
the functions listed below. Some may be used more than once. Only enter one per numbered line. No
numbered line is to be left blank

� bind

� socket

� connect

� listen

� accept

Client Server
1

2

3

4

5

6 Page 21 of 22

Problem 10. (9 points):
You now need to demonstrate your understanding of concurrency across multiple ways of implementing it.
Given a concurrent program using threads, fill in the key blanks of a concurrent program using select() so
that it accomplishes the same goal.

The following simple program echos the text entered onto 10 different terminals to the screen one character at
a time. The code for you to complete is on the following page.

int main (int argc, char *argv[])
{

int j;
for (j = 0; j < 10; j++)
{

pthread_t pthread;
int* fd = malloc(sizeof(int));

/* Get a file descriptor for a terminal.
* Don’t worry about how.
*/
*fd = getNextTerminalFD();

pthread_create (&pthread, NULL, thread, fd);
}

while (1) {}
}

void thread (void *fd)
{

int file_d = *(int*)fd;
while (1)
{

printf (‘‘%c ‘‘, getc(file_d));
}

}

Page 22 of 22

int main (int argc, char *argv[])
{

int j;
int fd_list[10];
fd_set read_set, ready_set;

for (j = 0; j < 10; j++)
{

fd_list[j] = getNextTerminalFD();

___;
}

while (1)
{

___;

for (j = 0; j < 10; j++)
{

if (__)
{

printf (‘‘%c ‘‘, getc(fd_list[j]));
}

}
}

}

Page 23 of 22

