
15-213 Introduction to Computer Systems

Exam 2
April 10, 2007

Name: Model Solution

Andrew User ID: fp

Recitation Section:

• This is an open-book exam.

• Notes and calculators are permitted, but not computers.

• Write your answer legibly in the space provided.

• You have 80 minutes for this exam.

• We will drop your lowest score among questions 1–6.

Symbols and Linking

Virtual Address Translation

Process Control

Signals

Garbage Collection

Cyclone

Problem Max Score

1 15 15

2 15 15

3 15 15

4 15 15

5 15 15

6 15 12

Total 75

1

1. Symbols and Linking (15 points)

In this problem we consider issues of symbols and linking. Consider the following three
files.

File polygon.h:

struct Node {
float pos[2];
int marked; /* only for GC */
struct Node* next;
struct Node* prev;

};
typedef struct Node node;

node* alloc(); /* allocated new node */
void init(); /* initialize store */
void gc(); /* call garbage collector */

File main.c (with portions of the function elided)

#include "polygon.h"
node* root_ptr; /* root pointer, for GC */

int main () {
node* p;
init();
p = alloc();
root_ptr = p; /* GC root is first allocated pointer */
...
gc();
...
return 0;

}

File gc.c (with function bodies elided)

#include "polygon.h"
#define N (1<<20)
static node polygon[N]; /* polygon array */
static node* free_ptr; /* free list */
static node* root_ptr; /* root pointer, for GC */

void mark(node* v) {...}
void sweep () {...}
void gc () {...}
void init () {...}
node* alloc () {...}

2

Possible definition of the functions in gc.c are revisited in Problems 5 and 6 although
this is not relevant here.

Recall that a line #include "file"will literally be replaced by the contents of "file" by
the C preprocessor. We compile the files to obtain an executable object file polygon with
gcc -o polygon main.c gc.c. Questions related to symbols and linking therefore
refer to the expanded versions of the files.

1. (9 points) Fill in the following tables by stating for each name whether it is local or
global, and whether it is strong or weak. Cross out any box in the table that does
not apply. For example, cross out the first box in a line if the symbol is not in the
symbol table, or cross out the second box in a line if the symbol is not global (and
therefore neither weak nor strong).

main.c

Local or Global? Strong or Weak?

root ptr global weak

init global weak

main global strong

gc.c

Local or Global? Strong or Weak?

N X X

polygon local X

root ptr local X

alloc global strong

3

2. (3 points) Explain why linking succeeds to create an executable despite the fact that
some symbols are declared in both files.

The symbols alloc, init, and gc are weak in main.c and strong in gc.c.
The symbol root ptr is local in gc.c and therefore does not conflict with the
same symbol in main.c.

3. (3 points) Explain why the executable fails to be correct despite the fact that it com-
piles and links without warning. Propose how to fix the bug. Be clear in your
suggestion correction (for example, replace the line . . . with . . .).

The value assigned to root ptr in main.c will not be seen by the garbage
collector, since the symbols are different in the two files. One solution would
be to hoist the declaration of root ptr to polygon.h; another to remove its
qualification as static in gc.c.

4

2. Virtual Address Translation (15 points)

In this problem we consider virtual address translation using a two-level page table. The
parameters of the machine are as follows:

• The memory is byte addressable.

• Virtual addresses are 32 bits wide.

• The 32 bits of the virtual address are divided into 8 bits for VPN1, 8 bits for VPN2,
and 16 bits for the VPO.

• Physical addresses are 24 bits wide.

1. (3 pts) Given the parameters above, fill in the blanks below.

(i) The page size is 64KB .
(ii) The maximal physical memory size is 16MB .

(iii) Assuming a page table entry is 32 bits, the size of a page table is 1KB .

Next we consider the behavior of address translation using the two-level page table.
We assume that page table entries have the following form, where unspecified bits are
irrelevant for this problem:

• Level 1:

– Bits 31–16: High 16 bits of level 2 page table physical base address
– Bit 0: 1 = Present in physical memory

• Level 2:

– Bits 31–24: PPN
– Bit 0: 1 = Present in physical memory

For the following questions, assume that the VPN is not cached in the TLB, so we have
to consult the page tables. The PTBR is set at 0xC80000.

Address Content

0xC80000 0xCA1C0001

0xC80004 0xCA1B0000

0xC80008 0xCA1D0001

0xC8000C 0xCA1B0001

0xC80010 0x00000000

0xC80014 0xCA1B0001

0xC80018 0xC8000000

0xC8001C 0xCA1B0001

Address Content

0xCA1B00 0x07000001

0xCA1B04 0xFF000000

0xCA1B08 0x08000001

0xCA1B0C 0xCA000001

0xCA1B10 0x01000000

0xCA1B14 0x00000000

0xCA1B18 0x09000001

0xCA1B1C 0xCA000000

5

2. (6 points) For the virtual address 0x0300F218, indicate the physical address and
various results of the translation. If there is a page fault, enter “—” for the answer
and all subsequent results. All answers should be given in hexadecimal.

Parameter Value

VPN1 03

VPN2 00

PTE (level 1) 0xCA1B0001

Page Fault? (Y/N) N

PTE (level 2) 0x07000001

Page Fault? (Y/N) N

PPN 07

Physical Address 0x07F218

3. (6 points) For the virtual address 0x0507EE00, indicate the physical address and
various results of the translation. If there is a page fault, enter “—” for the PPN and
Physical Address. All answers should be given in hexadecimal.

Parameter Value

VPN1 05

VPN2 07

PTE (level 1) 0xCA1B0001

Page Fault? (Y/N) N

PTE (level 2) 0xCA000000

Page Fault? (Y/N) Y

PPN —

Physical Address —

6

3. Process Control (15 points)
Consider the following C program. For space reasons, we do not check return codes, so
assume that all functions return normally. Also assume that printf is unbuffered, and
that each process successfully runs to completion.

int main() {
int pid;

pid = fork() && fork();
if (!pid)
printf("A\n");

else
printf("B\n");

exit(0);
}

Mark each column that represents a valid possible output of this program with ‘Yes’
and each column which is impossible with ‘No’.

No No Yes No No

A A A A A

A A A A A

A B B A

B B

7

4. Signals (15 points)

Consider the following code.

int val = 1;

void handler(int sig) {
waitpid(-1, NULL, 0);
val++;

}

int main() {
int pid;
signal(SIGCHLD, handler);
pid = fork();
if (pid == 0) {
val = 0;
exit(0);

}
printf("%d\n", val);
exit(0);

}

Assume that all system calls succeed, and that all processes terminate normally. List
all possible outputs of this program.

1 or 2

8

5. Garbage Collection (15 points)
In this problem we consider code for a specialized mark-and-sweep garbage collector, a
skeleton of which was introduced in Problem 1. We first explain the data structures. A
polygon is implemented as a doubly linked list of vertices, where each vertex has a link
to its successor and predecessor vertices (the next and prev pointers, respectively). In
addition the x and y position of each vertex are stored in pos[0] and pos[1].

struct Node {
float pos[2];
int marked; /* only for GC */
struct Node* next;
struct Node* prev;

};
typedef struct Node node;

Finally, we have a mark (field marked) which is used exclusively by the garbage collector
and should not be touched by the user program. For simplicity, we store this as a whole
int instead of as a bit.

There is a static array polygon of size N containing all vertices. There is also a pointer
to the beginning of a list of free vertices, free_ptr, and a single root pointer, root_ptr
pointing to the polygon. The free pointer must be maintained by the garbage collector; the
root pointer is maintained by the user program and may not be changed by the garbage
collector.

#define N (1<<20)
node polygon[N]; /* polygon store, max 1M vertices */
node* free_ptr; /* free list */
node* root_ptr; /* root pointer */

First, the garbage collector. This function is invoked either when the free list is empty
when a node supposed to be allocated, or explicitly from the user program to “clean up”
the store.

void gc () { /* call when free_ptr == NULL */
mark(root_ptr);
sweep();

}

1. (3 pts) Traversal of the heap during the marking phase of a mark-and-sweep garbage
collector is (circle correct answer)

(i) Depth first yes, depth first

(ii) Breadth first

(iii) Best first

(iv) Arbitrary

9

2. (5 pts) The mark function takes a node as argument and marks all nodes reach-
able from the given node. Rather than using pointer reversal techniques, this mark
function should be recursive. Complete the definition of mark. There are many
solutions—for calibration, our solution adds 5 lines to the function body.

void mark(node* v) {
if (!v || v->marked)
return;

v->marked = 1;
mark(v->next);
mark(v->prev);

}

3. (7 pts) Next, complete the function sweep. Maintain the free list as a singly linked
list with next pointing to the next free element. There are many solutions–for cali-
bration, our solutions adds 7 lines to the function body.

void sweep () {
int i;
node* v;
free_ptr = NULL; /* initialize free list */
for (i=0; i<N; i++) {
v = &polygon[i];
if (v->marked)
v->marked = 0;

else {
v->next = free_ptr;
free_ptr = v;

}
}

}

10

6. Cyclone (15 points)

In this problem we reconsider the garbage collector sketched above and port it from C to
Cyclone. We have left out some type declarations for you to fill in.

struct Node {
float pos[2];
int marked; /* only for GC */
struct Node* next;
struct Node* prev;

};
typedef struct Node node;

#define N (1<<20)
node polygon[N]; /* polygon store, max 1M vertices */

________ free_ptr; /* 1 */ /* free list */

________ root_ptr; /* 2 */ /* root pointer */

________ alloc () { /* 3 */ /* return pointer to new vertex */

________ new_ptr; /* 4 */
if (!free_ptr) {
gc();
if (!free_ptr) {
printf("Out of space!\n");
exit(0);

}
}
new_ptr = free_ptr;
free_ptr = free_ptr->next;
new_ptr->next = NULL; /* init next pointer */
new_ptr->prev = NULL; /* init prev pointer */
new_ptr->marked = 0; /* unmarked */
/* do not initialize pos[2] */
return new_ptr;

}

11

int main () {

________ p1; /* 5 */

________ p2; /* 6 */
init(); /* initialize polygon store */
p1 = alloc(); /* create two-vertex "polygon" */
p2 = alloc();
p1->next = p2; p1->prev = p2;
p2->next = p1; p2->next = p1;
root_ptr = p1;
gc();
return 0;

}

1. (6 pts) For each of the 6 missing types, fill in the most precise type among the follow-
ing which makes the code type-check without any implicit casts (and hence without
warnings).

(i) node@ (most precise)

(ii) node*

(iii) node? (least precise)

1 node*

2 node*

3 node@

4 node@

5 node@

6 node@

2. (3 pts) Assume that Cyclone considers global variables as living on the heap (region
‘H). Each of the following expressions denotes a pointer. Indicate the region that
this pointer points to, or write unknown if this cannot be determined.

(i) p1 in function main. ‘H

(ii) &p1 in function main. ‘main

(iii) new_ptr in function alloc. ‘H

12

3. (3 pts) The pos[] fields are not initialized in the alloc function. Explain why this
does not compromise safety of Cyclone.

They are floating point numbers, so computation with them cannot lead to a
memory error: the bit pattern in these fields can always be interpreted as a
floating point number of some form.

13

