
15-213 Introduction to Computer Systems

Exam 2
April 11, 2006

Name: Model Solution

Andrew User ID: fp

Recitation Section:

• This is an open-book exam.

• Notes and calculators are permitted, but not computers.

• Write your answer legibly in the space provided.

• You have 80 minutes for this exam.

• We will drop your lowest score among questions 1–6.

Problem Max Score

1 15

2 15

3 15

4 15

5 15

6 15

Total 75

1

1. Symbols and Linking (15 points)
Consider the following three files, main.c , fib.c , and bignat.c :

/* main.c */
void fib (int n);
int main (int argc, char** argv) {

int n = 0;
sscanf(argv[1], "%d", &n);
fib(n);

}

/* fib.c */
#define N 16

static unsigned int ring[3][N];

static void print_bignat(unsigned int* a) {
int i;
for (i = N-1; i >= 0; i--)

printf("%u ", a[i]); /* print a[i] as unsigned int */
printf("\n");

}

void fib (int n) {
int i, carry;
from_int(N, 0, ring[0]); /* fib(0) = 0 */
from_int(N, 1, ring[1]); /* fib(1) = 1 */
for (i = 0; i <= n-2; i++) {

carry = plus(N, ring[i%3], ring[(i+1)%3], ring[(i+2)%3]);
if (carry) { printf("Overflow at fib(%d)\n", i+2); exit(0); }

}
print_bignat(ring[n%3]);

}

Furthermore assume that a file bignat.c defines functions plus and from_int of
the form

int plus (int n, unsigned int* a, unsigned int* b, unsigned int* c);
void from_int (int n, unsigned int k, unsigned int* a);

A possible definition of these functions is given in Problem 6, although this is not relevant
here.

2

1. (9 points) Fill in the following tables by stating for each name whether it is local or
global, and whether it is strong or weak. Cross out any box in the table that does
not apply. For example, cross out the first box in a line if the symbol is not in the
symbol table, or cross out the second box in a line if the symbol is not global (and
therefore neither weak nor strong). Recall that in C, external functions do not need
to be declared.

main.c

Local or Global? Strong or Weak?

fib global weak

main global strong

fib.c

Local or Global? Strong or Weak?

ring local X

print bignat local X

fib global strong

plus global weak

2. (3 points) Now assume that the file bignat.c is compiled to a static library in
archive format, bignat.a exporting the symbols plus and from_int .

For each of the following calls to gcc , state if it

(A) compiles and links correctly, or

(B) linking fails due to undefined references, or

(C) linking fails due to multiple definitions .

Command Result (A, B, or C)

gcc -o fib main.c fib.c bignat.a A

gcc -o fib bignat.a main.c fib.c B

gcc -o fib fib.c main.c bignat.a A

3

3. (3 points) Consider the case where the programmer accidentally declared the vari-
able ring in the file fib.c with

static int ring[3][N];

instead of static unsigned int ring[3][N] . Mark each of the following state-
ments as true or false.

• The files all still compile correctly. True False True

• The files can all still be linked correctly. True False True

• The resulting executable will still run correctly. True False True

Because conversions between signed and unsigned integers do not change the
representation, and their sizes are identical, calls to the library functions will
behave exactly as before. Comparisons will behave differently, but they are not
used in this code.

4

2. Virtual Address Translation (15 points)

We consider a virtual address system with the following parameters.

• The memory is byte addressable.

• Virtual addresses are 16 bits wide.

• Physical addresses are 16 bits wide.

• The page size is 1024 bytes.

• The TLB is fully associative with 16 total entries.

Recall that a fully associative cache has just one set of entries. In the following tables, all
numbers are given in hexadecimal. The contents of the TLB and the page table for the
first 16 virtual pages are as follows. If a VPN is not listed in the page table, assume it
generates a page fault.

TLB
Tag PPN Valid

03 1B 1
06 06 0
28 23 1
01 18 0

31 01 1
12 00 0
07 3D 1
0B 11 1

2A 2C 0
11 1C 0
1F 03 1
08 14 1

09 2A 1
3F 30 0
10 0D 0
32 11 0

Page Table
VPN PPN Valid

00 27 1
01 0F 1
02 19 1
03 1B 1
04 06 0
05 03 0
06 06 0
07 3D 0
08 14 1
09 2A 1
0A 21 1
0B 11 1
0C 1C 1
0D 2D 0
0E 0E 0
0F 04 1

5

1. (5 points) In the four rows below, mark the bits that constitute the indicated part of
the virtual address with an X. Leave the remaining bits of each row blank.

Virtual Page Number

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPN X X X X X X

Virtual Page Offset

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPO X X X X X X X X X X

TLB Tag

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TLBT X X X X X X

6

2. (5 points) For the virtual address 0xC7A4, indicate the physical address and various
results of the translation. If there is a page fault, enter “—” for the PPN and Physical
Address. All answers should be given in hexadecimal.

Virtual Address (one bit per box)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Parameter Value

VPN 31

TLB Tag 31

TLB Hit? (Y/N) Y

Page Fault? (Y/N) N

PPN 01

Physical Address 0x07A4

3. (5 points) For the virtual address 0x05DD, indicate the physical address and various
results of the translation. If there is a page fault, enter “—” for the PPN and Physical
Address. All answers should be given in hexadecimal.

Virtual Address (one bit per box)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Parameter Value

VPN 01

TLB Tag 01

TLB Hit? (Y/N) N

Page Fault? (Y/N) N

PPN 0F

Physical Address 0x3DDD

7

3. Process Control (15 points)
Consider the following C program. For space reasons, we do not check return codes, so
assume that all functions return normally. Also assume that printf is unbuffered.

int main() {
pid_t pid1, pid2;

pid1 = fork();
pid2 = fork();
if (pid1 && pid2) printf("A\n");
if (pid1 || pid2) printf("B\n");
exit(0);

}

Mark each column that represents a valid possible output of this program with ‘Yes’
and each column which is impossible with ‘No’.

Yes Yes Yes No No

A B B B B

B A B B B

B B A B B

B B B A B

8

4. Signals (15 points)

Consider the following code.

int i = 1;

void handler (int sig) {
i++;

}

int main() {
pid_t pid;
sigset_t s;
sigemptyset(&s);
sigaddset(&s, SIGUSR1);
signal(SIGUSR1, handler);
sigprocmask(SIG_BLOCK, &s, 0);
pid = fork();

<LINE A>
if (pid != 0) {

i = 2;
<LINE B>

} else {
i = 3;

<LINE C>
}
sigprocmask(SIG_UNBLOCK, &s, 0);
pause(); /* pause to allow all signals to arrive */
printf("%d\n", i);
exit(0);

}

We assume that pause(); pauses long enough that all signals in a process arrive be-
fore the following printf command is executed and that concurrently running processes
proceed to their pause(); command if they are not already there. We also assume that
fork(); is successful and that all processes run to successful completion.

Now consider the effect of adding the command

kill(pid, SIGUSR1);

either at <LINE A> , <LINE B> , or <LINE C> . Recall that if the first argument to kill
is 0, it sends the signal to all processes in the current process group. For each resulting
program, list the possible values that may be printed for any given run. You may assume
that no other process sends a SIGUSR1signal.

9

1. (5 pts) <LINE A>

3 4, 4 3, 3 5, or 5 3

2. (5 pts) <LINE B>

2 4 or 4 2

3. (5 pts) <LINE C>

3 4 or 4 3

10

5. Garbage Collection (15 points)

In this problem we consider a tiny list processing machine in which each memory word
consists of two bytes: the first byte is a pointer to the tail of the list and the second byte is
a data element. The end of a list is marked by a pointer of 0x00 . We assume that the data
element is never a pointer.

1. (8 points) In the first question we consider a copying collector.

We start with the memory state on the left, where the range 0x10 –0x1F is the from-
space and the range 0x20 –0x2F is the to-space. All addresses and values in the
diagram are in hexadecimal.

Write in the state of memory after a copying collector is called with root pointers
0x12 and 0x1A and answer the subsequent question. You may leave cells that re-
main unchanged blank.

Before GC

Addr Ptr Data

10 12 2C

12 18 FF

14 12 0E

16 1C AB

18 16 10

1A 00 00

1C 12 1D

1E 1A 00

After GC

Addr Ptr Data Addr Ptr Data

10 20 24 FF

12 20 22 00 00

14 24 26 10

16 26 26 28 AB

18 24 28 20 1D

1A 22 2A

1C 28 2C

1E 2E

After garbage collection, free space starts as address 2A

11

2. (7 points) In the second question we consider a mark and sweep collector.

We use the lowest bit of the pointer as the mark bit, because it is normally always
zero since pointers must be word-aligned.

Assume the garbage collector is once again called with root pointers 0x12 and
0x1A . Write in the state of memory after the mark phase, and then again after the
sweep phase and answer the subsequent question. You may leave cells that remain
unchanged blank.

Before GC

Addr Ptr Data

10 12 2C

12 18 FF

14 12 0E

16 1C AB

18 16 10

1A 00 00

1C 12 1D

1E 1A 00

After Marking Phase

Addr Ptr Data

10

12 19

14

16 1D

18 17

1A 01

1C 13

1E

After Sweep Phase

Addr Ptr Data

10 14

12 18

14 1E

16 1C

18 16

1A 00

1C 12

1E 00

The free list now starts at address 10 .

12

6. Cyclone (15 points)

Now consider the file bignat.c that implements addition and conversion of an un-
signed integer to a bignat representation as we assumed in Problem 1.

typedef unsigned int uint;

int plus (int n, uint* a, uint* b, uint* c) {
int i;
int carry = 0;
for (i = 0; i < n; i++) {

c[i] = a[i] + b[i];
if (carry) {

c[i]++;
carry = (c[i] <= a[i]);

} else {
carry = (c[i] < a[i]);

}
}
return carry;

}

void from_int (int n, uint k, uint* a) {
int i;
a[0] = k;
for (i = 1; i < n; i++)

a[i] = 0;
return;

}

1. (3 points) Is it legal for a, b, and c to be pointers to different regions of memory?
Circle one

Yes No Yes

2. (4 points) Assume a, b, and c are declared as fat pointers. Use the notation curr(p),
lower(p), and upper(p) to denote the current value of a fat pointer p and its lower
and upper bounds. The bounds are inclusive: lower(p) ≤ curr(p) ≤ upper(p), and
you may assume all fat pointers will always satisfy this invariant. Under which
conditions on n, a, b, and c will this code execute without an illegal pointer access
exception?

curr(p) + n− 1 ≤ upper(p) for p ∈ {a, b, c}.

13

In order to avoid the still possible overflow, we would like to implement arbitrarily
large unsigned integers as linked lists of unsigned integers. In order to avoid always
using linked lists, we represent bignats as a tagged union, either consisting just of an
integer or a pointer to a linked list representation.

struct List {
unsigned int head;
struct List* tail;

};

@tagged union Bignat {
unsigned int x;
struct List* l;

};

4. (5 points) Recall that Cyclone translates its source into C code. Give a representation
of the tagged union construct above that would be a plausible result of a translation
from Cyclone to C.

enum Tag {INT, LIST};
struct Bignat {

Tag t;
union U {

unsigned int x;
struct List* l;

} u;
};

5. (3 points) Give a plausible translation of the following Cyclone code fragment using
your translation of the tagged union.

union Bignat a;
a.x = 15213;

struct Bignat a;
a.t = INT;
a.u.x = 15213;

14

