Andrew login ID:
Full Name:

CS15-213, Fall 2004

Exam 2

Tuesday November 16, 2004
Instructions:

e Make sure that your exam is not missing any sheets, then write your full name and Andrew login 1D
on the front.

e Write your answers in the space provided below the problem. If you make a mess, clearly indicate
your final answer.

e The exam has a maximum score of 74 points.

e The problems are of varying difficulty. The point value of each problem is indicated. Pile up the easy
points quickly and then come back to the harder problems.

e This exam is OPEN BOOK. You may use any books or notes you like. You may use a calculator, but
not a laptop, PDA, or any wireless devices. Good luck!

1(10):

2 (12):

3 (12):

4 (10):

5 (6):

6 (12):

7 (12):

TOTAL (74):

Page 1 of 16

Problem 1. (10 points):
This problem tests your understanding of programming in the presence of signals — in particular, race con-
ditions. The questions are based on the library below which maintains a sorted list of integers.

The programs are compiled without optimization: the machine instructions executed are a straightforward
translation of the C code. In particular, statements are never reordered.

Remember that mal | oc is not guaranteed to zero the memory it returns.

1 struct list {

2 struct |ist *next;

3 int val ue;

4},

5 static struct list global _header = { NULL, O };
7 [/* Find the |l argest datum < val ue */

8 static struct list *find _prev(int value) {

9 struct list *prev = &gl obal _header

10 whi | e(prev->next) {

11 i f(prev->next->val ue >= val ue) break;
12 prev = prev->next;

13 }

14 return prev;

15}

17 /* Add 'value’ into the list */
18 void add_datunm(int value) {

19 struct list *prev = find_prev(val ue);

20 struct list *node = mall oc(sizeof (*node));
21 struct list *next = prev->next;

22

23 i f(!node) return;

24

25 prev->next = node;

26 node- >next = next;

27 node- >val ue = val ue;

28 }

30 /* Renove the first datum >= ’val ue’ */
31 void renove_datun(int value) {

32 struct list *prev, *node, *next;
33

34 prev = find_prev(val ue);

35 node = prev->next;

36 i f(!node) return;

37 next = node->next;

38

39 prev->next = next;

40 free(node);

41}

Page 2 of 16

43 /* Count the nunmber of data in the list */
44 int count(void) {
45 struct list *node = gl obal _header. next;
46 int cnt = O;
a7 whi | e(node) {
48 cnt ++;
49 node = node- >next;
50 }
51 return cnt;
52 }
A. 1 void handler(int sig) {
2 printf("we have % el enents\n", count());
3}
4 int main() {
5 char buf[256];
6 si gnal (SI GUSR2, handl er);
7
8 whi | e(fgets(buf, sizeof(buf), stdin)) {
9 add_dat um(at oi (buf));
10 }
11 return O;
12}
Does this have a race condition that can cause the program to crash? Why or why not? (2 points)
B. 1 void handler(int sig) {
2 printf("we have % el enents\n", count());
3}
4 int main() {
5 char buf[256];
6 int n = 100; while(n > 0) { add_datum(n--); }
7 signal (SI GUSR2, handl er);
8
9 whi | e(fgets(buf, sizeof(buf), stdin)) {
10 renove_dat un{ at oi (buf));
11 }
12 return O,
13}

Does this have a race condition that can cause the program to crash? Why or why not? (2 points)

Page 3 of 16

C. 1 void handler(int sig) {
2 add_dat un{randomn());
3}
4 int main() {
5 char buf[256];
6 si gnal (SI GUSR2, handl er);
7
8 whi | e(fgets(buf, sizeof(buf), stdin)) {
9 renove_dat un{ at oi (buf));
10 }
11 return O,
12}

This code has a race condition. While it won’t cause a crash, it could cause a memory leak. Why? (2
points)

D. Explain one way to avoid all the crashes and undesired behaviour in all the examples above. (4 points)

Page 4 of 16

Problem 2. (12 points):

This problem concerns the way virtual addresses are translated into physical addresses. Imagine a system
with the following parameters:

¢ Virtual addresses are 20 bits wide.
e Physical addresses are 18 bits wide.
e The page size is 4096 bytes.

e The TLB is 2-way set associative with 16 total entries.

The contents of the TLB and the first 32 entries of the page table are shown as follows. All numbers are
given in hexadecimal.

TLB Page Table
Index || Tag PPN Valid VPN PPN Valid[VPN PPN Valid
0 6 13 1 00 17 1 |10 26 0
1B 20 1 01 28 1 |11 17 0
1 |10 oF 1 02 14 1 |12 O0E 1
OF 1E 0 03 0B 0 |13 10 1
2 | 1F ot 1 04 26 0 |14 2D 0
11 IF 0 05 13 1 |15 1B O
3 [03 2B 1 06 OF 1 |16 31 1
1D 23 0 07 10 1 |17 12 0
4 |06 08 1 08 1C 0 |18 23 1
OF 19 1 09 25 1 |19 04 O
5 | 0A 09 1 0OA 31 0 [1A 0C 1
IF 20 1 OB 16 1 [1B 2B 1
6 | 02 13 0 ocC 0L 1 |1C 1E 0
18 12 1 o0 15 1 |[1D 3E 1
7 [oc 0B 0 OE oC 0 |1 27 1
1IE 24 0 OF 14 0 | 1IF 18 1

Page 5 of 16

Part 1

1. The diagram below shows the bits of a virtual address. Please indicate the locations of the following
fields by placing an X’ in the corresponding boxes of that field’s row. For example, if the virtual page

offset were computed from the 2 most significant bits of the virtual address, you would mark the *O’
(offset) column as shown:

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

ofx{xf [PP

The virtual page offset
The virtual page number
The TLB index

The TLB tag

4—z0

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

2. The diagram below shows the format of a physical address. Please indicate the locations of the
following fields by placing an *X” in the corresponding boxes of that field’s row.

O The physical page offset
N The physical page number

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Page 6 of 16

Part 2

For the given virtual addresses, please indicate the TLB entry accessed and the physical address. Indicate
whether the TLB misses and whether a page fault occurs. If there is a page fault, enter “-” for “PPN” and
leave the physical address blank.

Virtual address: Ox D8BAC3

1. Virtual address (one bit per box)
19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

2. Address translation

| Parameter | Value | Parameter | Value
VPN 0x TLB Hit? (Y/N)
TLB Index | Ox Page Fault? (Y/N)
TLB Tag 0x PPN 0x

3. Physical address(one bit per box)
17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

Virtual address: 0x1665D

1. Virtual address (one bit per box)
19 18 17 16 15 14 13 12 11 10 9 8 7 6 S5 4 3 2 1 O

2. Address translation

| Parameter | Value | Parameter | Value
VPN 0x TLB Hit? (Y/N)
TLB Index | 0x Page Fault? (Y/N)
TLB Tag 0x PPN 0x
3. Physical address(one bit per box)
17 16 15 14 13 12 11 10 9 8 7

Page 7 of 16

Problem 3. (12 points):

This problem tests your understanding of Unix process control. Consider the following C program. For
space reasons, we are not checking error return codes, so assume that all functions return normally. Assume
that pri nt f is unbuffered.

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>
#i ncl ude <sys/wait.h>

int main() {
int i = 0;
pid_t pidl, pid2;

if((pidl = fork()) == 0) {

i ++;
if((pid2 = fork()) == 0) {
i ++;
printf("i: %\n", ++i);
exit(0);
}
printf("i: %\n", i);
}
el se {
i f(waitpid(pidl, NULL, 0) > 0) {
printf("i: %\n", ++i);
}
}
printf("i: %\n", ++i);
exit(0);

Draw an X through any column which does not represent a valid possible output of this program.

NEFEDNWEPE
oo
NPT
o
oo
oo

Page 8 of 16

Problem 4. (10 points):

This problem tests your understanding of the the cache organization and performance. To simplify your
reasoning, you may assume the following:

l.sizeof (int) = 4

2. X begins at memory address 0 and is stored in row-major order.

3. The cache is initially empty.

4. The only memory accesses are to the entries of the array x. All variables are stored in registers.
5. All code is compiled with -O0 flag (no optimizations).

Consider the following C code:

int x[2][128];
int i;
sum = O;

for (i =0; i <128; i +4){
sum += x[O][i] * x[1][i];
}

Case 1

1. Assume your cache is a 512-byte direct-mapped data cache with 16-byte cache blocks. What is the cache
miss rate? (3 pts)
missrate = %

2. If the cache were twice as big, what would be the miss rate? (2 pts)

missrate = %

Case 2

1. Assume your cache is 512-byte 2-way set associative using an LRU replacement policy with 16-byte
cache blocks. What is the cache miss rate? (3 pts)
missrate=__ %

2. Will larger cache size help to reduce the miss rate? (Yes / No) (1 pt)
3. Will larger cache line help to reduce the miss rate? (Yes / No) (1 pt)

Page 9 of 16

Problem 5. (6 points):

True/False:

1. A linker needs access to the source code to determine what global variables are referenced by a code
file.

2. After a fork occurs, the memory updates made by the child process can affect the behavior of the
parent process.

3. After a fork occurs, the file reads made by the child process can affect the behavior of the parent
process.

4. When the ki | I function is invoked, a termination signal will be sent to the indicated process.

5. The availability of pointer casting in C makes it impossible for a garbage collector to identify all
inaccessible data.

6. Implementing the free list as a doubly linked list makes it possible to implement the f r ee operation
in O(1) time while still doing block coalescing.

Page 10 of 16

Problem 6. (12 points):

This problem tests your understanding of basic cache operations. A frequent operation in image processing
programs is to convolve a large array (= the image) with a small, constant matrix (= the kernel). Filter
operations such as sharpening, blurring, edge-enhancement can be implemented by choosing the kernel
elements. In the simplest case, the kernel is a 3x3 matrix.

For this problem, you should assume a very large N x N image array of unsi gned short’s, where N
happens to be an integral power of 2. The inner loop uses two int-pointers src and dst that scan the image
array. There are two arrays: src is scanning the source image while dst is pointing to the resulting image
after the convolution kernel has been applied. Thus the inner loop looks like this:

unsi gned short *src, *dst;
{ int new_ pix;

/* compute one pixel */

new pi x = srcj 0] * A
new_pi x += srcj - N * B
new pix += srcf[-1] * B;
new pix += src[1] * B;
new pi x += srcj + N * B;
new pix += src[-1 - N * C
new pix +=src[1 - N * C
new pix += src[-1 + N * C
new pix +=src[1 + N * C

/* save the new pixel */
*dst = new_pi x;

dst ++;
Src++;

This code utilizes the fact that many 3x3 kernels have rotational symmetry and have only 3 distinct values
A, B, C. You should assume these values are kept in three registers. Likewise, the pointers src and dst are
also stored in registers, as are the variables needed to control the inner loop. The target machine is fairly old
and uses a write-through cache with no-write-allocate policy. Therefore, you do not need to worry about the
write operations to the destination image array.

Each cache line on Harry’s machine holds 4 unsi gned short s (8 Bytes). The cache size is 16 KBytes,
which is too small to hold even one row of the image. Hint: each row has N elements, where N is a power
of 2.

Page 11 of 16

Figure 1 shows how this filter is scanning the source image array. The thick vertical bars represent the
boundaries of cache lines: four consecutive horizontal squares are one cache line. The convolution kernel is
represented by the 9 squares that are not marked with an X.

The 2 kernels shown in Figure 1 represent 2 successive iterations (case A and B) through the inner loop.
The src pointer is incremented one cell at a time and moves from left to right in these pictures.

You shall mark each of the 9 squares those with either a ’"H’ or a "M’ indicating if the corresponding memory
read operation hits (H) or misses (M) in the cache. Cells that contain an X do not belong to the convolution
step that is being computed and you should not mark these.

Part 1

In this part, assume that the cache is organized as a direct mapped cache. Please mark the left column in
Figure 1 with your answer. The right column may be used as scratch while you reason about your answer.
We will grade the left column only.

Your Answer in this column Scratch / Spare column

XEX| X[X| XX X[X]|X]X XEX| X[X| XX X[X]|X]}X
XEX| X[X X[XX X X| X[X X| X X
XEX| X[X XXX CaseA XX|X|X X[X[X
XEX| X[X X[XX X X| X| X X| XX
XEX| X[X| XEX| X[X]| X} X XEX| X[X| XX X[X]| X} X
XEX| X[X| XEX| X[X]| XX XEX| X[X| XEX| X[X]| XX
XX X|X]| X X X XX X|X]| X X X
XEX| X X| X X|X CaseB XIX| X| X| X X X
XEX| X[X]| X X X XX X|X]| X X[X
XEX| X[X| XEX| X[X]| XX XEX| X[X| XEX| X[X]| X} X

== Direction of array traversal

Figure 1: Convolution with a direct mapped cache

Page 12 of 16

Part 2

In this part, assume a 3-way, set-associative cache with true Least Recently Used replacement policy (LRU).
As in Part 1 of this question, please provide your answer by marking the empty squares of the left column
in Figure 2 with your solution.

Your Answer in this column Scratch / Spare column

XEX| X X[XEX| X X| XX XEX| X[X[XEX| X X| XX
XX X| X| X| XX XX X| X[X| XX
XX X X[X|X§X CaseA XX X| X| X[XX
XX X[X[X| XX XX X| X| X| XX
XEX| X X[XEX| X X| XX XEX| X[X[XEX| X X| XX
XEX| X X[XEX| X X| XX XEX| X[X[XEX| X X| XX
XEX| X X| X| XX XEX| X X[X[XX
XEX| X X[X[XX CaseB XXX X[X[XX
XEX| X X| X| XX XEX| X X[X[XX
XEX| X X[XEX| X X| XX XEX| X[X[XEX| X X| XX

Figure 2: Convolution with a set associative cache

Page 13 of 16

Problem 7. (12 points):

This problem tests your knowledge of block coalescing.

Harry Q. Bovik is trying to write his mal | oc implementation. Assume his allocator does following:

Uses an implicit list of blocks.

All headers, footers, and pointers are 4 bytes in size

All memory blocks have a size of at least 16 bytes: (one header + one footer + payload of at least 8).
All memory blocks have their total size rounded up to a multiple of 8.

Allocated blocks consist of a header, a payload, and a footer.

All free block coalescing happens in the f r ee()) function.

The heap contains prologue and epilogue blocks which are allocated in the mal | oc initialization
function (guaranteed to be called before any call to mal | oc() or free()). The prologue and
epilogue are never freed although the epilogue is shifted appropriately when the heap is extended.

Page 14 of 16

A. Simple Header (4 points)

Let the header store the size of the block in bytes. Since the block size is always a multiple of 8, the three
least significant bits of the size are always 0. Harry decides to use these bits to store allocation info. The
low order bit is set to 0 when the block is free and 1 when the block is allocated. To correctly access the
size of the block’s payload, he must mask the lower 3 bits to 0’s. The footer value is set to match the header
value.

Harry wants to make his f r ee() function coalesce newly freed blocks with any and all adjacent free
blocks.

How many memory reads must f r ee() do to decide whether to coalesce this block with the ones around
it? Assume that the only piece of data currently available is the base pointer of the block that is currently
being freed.

What is the maximum number of writes that f r ee() must do to create the final coalesced block?

This question continues on the next page.

Page 15 of 16

B. Packed Header (4 points)

Harry’s implementation works, but it is a little slow. Like the clever 213 student that he is, he decides to
try and decrease the number of memory accesses made by his program by utilizing all three free bits in the
header:

e The header consists of the payload size, in bytes, OR’ed with the three flags described below. This
can be done since the payload size is always a multiple of 8. To access the size of the block’s payload,
you must mask the lower 3 bits to 0’s.

o Let the lower three bits be bs, b1, and by, respectively with by corresponding to the least significant bit
of the header.

e by indicates whether the previous block on the heap is allocated. This bit is 1 when the previous
block is allocated and 0 when the previous block is free. Assume that there is a prologue block that is
maintained, so the first allocatable block on the heap will have this bit set to 1.

e by indicates whether the next block on the heap is allocated. This bit is 1 when the next block is
allocated and 0 when the next block is free. Assume that there is an epilogue block that is maintained,
so the last allocatable block on the heap will have this bit set to 1.

e bg indicates whether this block on the heap is allocated. This bit is 1 when this block is allocated and
0 when this block is free.

The footer value is set to match the header value.

How many memory reads must f r ee() do to decide whether to coalesce this block with the ones around
it? Assume that the only piece of data currently available is the base pointer of the block that is currently
being freed.

What is the maximum number of writes that f r ee() must do to create the final coalesced block?

C. Custom Footer (4 points)

Consider the header format specified in Part B. But now, instead of having the footer mirror the header
value, Harry uses the footer to store a pointer to the header of the block.

How many memory reads must f r ee() do to decide whether to coalesce this block with the ones around
it? Assume that the only piece of data currently available is the base pointer of the block that is currently
being freed.

What is the maximum number of writes that f r ee() must do to create the final coalesced block?

Page 16 of 16

