
15-213 Introduction to Computer Systems

Exam 1
February 22, 2005

Name: Model Solution

Andrew User ID: fp

Recitation Section:

• This is an open-book exam. Notes are permitted, but not computers.

• Write your answer legibly in the space provided.

• You have 80 minutes for this exam.

Problem Max Score

1 15

2 15

3 15

4 15

5 7

6 8

Total 75

1

1. Floating Point (15 points)

Consider the following function in assembly language.

problem1:
pushl %ebp
movl %esp, %ebp
flds 16(%ebp)
fadds 12(%ebp)
fmuls 8(%ebp)
leave
ret

Recall that fld pushes the argument onto the floating point register stack, fadd pushes
and adds, and fmul pushes and multiplies. The suffix s determines size of the operands
to be 32 bits.

1. (5 points) Write out a corresponding function definition in C.

float problem1 (float x, float y, float z) {
return x * (y + z);

}

2. (1 points) Assume the standard representation of single-precision floating point
numbers with 1 sign bit, k = 8 bits for the exponent, and n = 23 bits for the fractional
value. What is the bias?

2k−1 − 1 = 127

3. (5 points) Give the hexadecimal representation of the number 1
4
.

0x3E800000

4. (4 points) Give the representation of 0xBE000000 as a fraction.

−1
8

2

2. Pointers and Functions (15 points)

The following somewhat misguided code tries to optimize the exponential function on
positive integers by creating an array of function pointers called table and using them
if the exponent is less than 4.

int exp0 (int x) { return 1; }
int exp1 (int x) { return x; }
int exp2 (int x) { return x * x; }
int exp3 (int x) { return x * x * x; }

_______________________________ = {
&exp0, &exp1, &exp2, &exp3

};

int exp (int x, int n) {
int y = 1;
if (n < 4)

return ____________________ ;
while (n > 0) {

y *= x;
n--;

}
return y;

}

1. (5 points) Fill in the missing declaration of table and complete the return state-
ment.

int (*table[4]) (int x)
(*table[n])(x)

3

2. (3 points) Note the assignment of program variables to registers in the following as-
sembly code produced by gcc for exp . We have elided some alignment instructions
and the specialized exp n functions.

table:
.long exp0
.long exp1
.long exp2
.long exp3

exp:
pushl %ebp
movl %esp, %ebp
subl $8, %esp
movl 12(%ebp), %edx
cmpl $3, %edx
movl 8(%ebp), %ecx
movl $1, %eax
jle _______
testl %edx, %edx
jle _______

.L11:
decl %edx
imull %ecx, %eax
testl %edx, %edx
jg .L11

.L6:
leave
ret

.L14:
subl $12, %esp
pushl %ecx
call _________________
jmp .L6

Variable Register

x %ecx

n %edx

y %eax

4

3. (3 points) Justify the use of particular registers chosen by gcc.

%ecx, %edx, and %eax are caller-save registers, which means the code of exp
does not have to save the prior values on the stack. In addition, %eax is a good
choice for y , since it always holds the return value of a function.

4. (4 points) Fill in the three missing lines of assembly code.

.L14

.L6
*table(,%edx,4)

5

3. Structures and Alignment (15 points)

Consider the following C declaration:

typedef struct {
unsigned short id;
char* name;
char andrew_id[9];
char year;
int raw_score;
double percent;

} Student;

1. (5 points) On the template below, show the layout of the Student structure. De-
lineate and label the areas for each component of the structure, cross-hatching the
parts that are allocated but not used. Clearly mark the end of the structure. You
should assume Linux alignment rules. Do not fill in the data fields; you will need
them to answer the next question.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10 00

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

FE 01 02 00 00

0–1 id ; 2–3 X; 4–7 name; 8–16 andrew id ; 17 year ; 18–19 X; 20–23 raw score ;
24–31 percent

2. (3 points) Show the state of an instance of the Student structure after the follow-
ing code is executed. Write in the assigned values by filling them into the assigned
squares above and leave the remaining squares blank. Assume a Linux/x86 archi-
tecture and use hexadecimal format.

Student jenn;
jenn.id = 16;
jenn.year = -2;
jenn.raw_score = 513;

6

3. (5 points) Rewrite the declaration to use the minimal amount of space for the struc-
ture with the same components. You should make sure that the amount of space is
minimal for both Linux and Windows alignment rules.

typedef struct {
char* name;
char andrew id[9];
char year;
unsigned short id;
double percent;
int raw score;

} CompactStudent;
Note that double percent cannot be last (at offset 20), because under the
Windows alignment rules its address must be a multiple of 8.

4. (2 points) How many bytes does your new structure require?

28

7

4. Optimization (15 points)

Consider the following declaration of a linked list data structure in C:

typedef struct LIST {
struct LIST *next;
int data;

} List;

We use a next pointer of NULL to mark the end of the list, and we assume we have a
function int length (List* p); to calculate the length of a non-circular linked list.
You may assume all linked lists in this problem are non-circular.

1. (3 points) The function count pos1 is supposed to count the number of positive
elements in the list at p and store it at k , but it has a serious bug which may cause it
not to traverse the whole list. Insert one line and change one line to fix this problem.

void count_pos1 (List *p, int *k) {
int i;
*k = 0;
for (i = 0; i < length(p); i++) {

if (p->data > 0)
(*k)++;

p = p->next;
}

}

Insert int n = length(p); before the loop and change the bounds check to
i < n

2. (5 points) Further improve the efficiency of the corrected function from part 1 by
eliminating the iteration variable i , changing it to a iteration using only pointers
instead. Fill in the template below.

void count_pos2 (List *p, int *k) {
*k = 0;
while (________________) {

if (p->data > 0)
(*k)++;

______________;
}

}

8

p and p = p->next;

3. (2 points) Your function from part 2 still has a bug in that it does not always “count
the number of positive elements in the list at p and stores it at k ”. Explain the problem.

It may sometimes be incorrect, because of the possibility of aliasing. If k is a
pointer to an element of the linked list, the answer may be incorrect since one
of the list elements is changed before it starts counting.

4. (5 points) Fix the problem you identified in part 3. Your function should also run
faster by reducing memory accesses when compared to the function in part 2.

void count pos3 (List *p, int *k) {
int i;
while (p) {

if (p->data > 0)
i++;

p = p->next;
}
*k = i;

}

9

5. Out-of-Order Execution (7 points)

1. (5 points) The inner loop corresponding to our answer to part 4 of the previous
problem has the following form:

.L48:
movl 4(%eax), %ecx # load 4(%eax.0) --> %ecx.1
testl %ecx, %ecx
jle .L47
incl %edx

.L47:
movl (%eax), %eax
testl %eax, %eax
jne .L48

Annotate each line with the execution unit operations for one iteration, assuming
the inner branch is not taken. To get you started, we have filled in the first operation.

.L48:
movl 4(%eax), %ecx load 4(%eax.0) → %ecx.1
testl %ecx, %ecx testl %exc.1, %ecx.1 → cc.1
jle .L47 jle-not-taken cc.1
incl %edx incl %edx.0 → %edx.1

.L47:
movl (%eax), %eax load (%eax.0) → %eax.1
testl %eax, %eax testl %eax.1, %eax.1 → cc.2
jne .L48 jne-taken cc.2

2. (2 points) Assuming most numbers in a list are positive and branch predictions are
correct, give a plausible lower bound on the CPE for the inner loop based on the
execution unit operations. Optimistically assume memory accesses are cache hits.

The two load and subsequent test and jump operations are independent and,
given enough processor resources, can be done in parallel. Moreover, there is
no data dependency between the increment of %edx and the above operations.
However, both loads within an iteration depend on the result of the second
load in the previous iteration. This means we cannot attain a CPE below 3.

10

6. Cache Memory (8 points)

Assume we have byte-addressable memory with addresses that are 12 bits wide. We have
a 2-way set associative cache with with 4 byte block size and 4 sets.

1. (3 points) On the template below, show the portions of an address that make up the
tag, the set index, and the block offset.

11 10 9 8 7 6 5 4 3 2 1 0

11–4 tag, 3–2 set index, 1–0 block offset

2. (5 points) Consider the following cache state, where all addresses, tags, and values
are given in hexadecimal format.

Set Index Tag Valid Byte 0 Byte 1 Byte 2 Byte 3
0 00 1 40 41 42 43

83 1 FE 97 CC D0
1 00 1 44 45 46 47

83 0 – – – –
2 00 1 48 49 4A 4B

40 0 – – – –
3 FF 1 9A C0 03 FF

00 0 – – – –

For each of following memory accesses indicate if it will be a cache hit or miss, when
they are carried out in sequence as listed. Also give the value of a read if it can be
infered from the information in the cache.

Operation Address Hit? Read Value (or Unknown)

Read 0x834 No Unknown

Write 0x836 Yes (not applicable)

Read 0xFFD Yes C0

11

