Andrew login ID:
Full Name:

CS15-213, Fall 2002

Exam 1

October 8, 2002
Instructions:

e Make sure that your exam is not missing any sheets, then write your full name and Andrew login 1D
on the front.

o Write your answers in the space provided below the problem. If you make a mess, clearly indicate
your final answer.

e The exam has a maximum score of 66 points.

e The problems are of varying difficulty. The point value of each problem is indicated. Pile up the easy
points quickly and then come back to the harder problems.

e This exam is OPEN BOOK. You may use any books or notes you like. You may use a calculator, but
no laptops or other wireless devices. Good luck!

1 (06):

2 (16):

3 (08):

4 (12):

5 (06):

6 (12):

7 (06):

TOTAL (66):

Page 1 of 11

Problem 1. (6 points):
Assume we are running code on a 5-bit machine using two’s complement arithmetic for signed integers. Fill
in the empty boxes in the table below. The following definitions are used in the table:

int y =-9;
unsigned z = vy;

Note: You need not fill in entries marked with “-".

Expression Decimal Representation Binary Representation

Zero 0

- —5

- 1 0010

y—z

TMax

TMin

Page 2 of 11

Problem 2. (16 points):

Consider the following 10-bit floating point representation based on the IEEE floating point format:
e There is a sign bit in the most significant bit.
e The next k = 4 bits are the exponent. The exponent bias is 7.
e The last n = 5 bits are the significand.

Numeric values are encoded in this format as a value of the form V = (—1) x M x 2¥, where s is the sign
bit, E is exponent after biasing, and M is the significand.

Part |

Answer the following problems using either decimal (e.g., 1.375) or fractional (e.g., 11/8) representations
for numbers that are not integers.

A. For denormalized numbers:

(a) What is the value E of the exponent after biasing?
(b) What is the largest value M of the significand?

B. For normalized numbers:

(a) What is the smallest value E of the exponent after biasing?

(b) What is the largest value E of the exponent after biasing?
(c) What is the largest value M of the significand?

Part I

Fill in the blank entries in the following table giving the encodings for some interesting numbers.

Description E M \%4 Binary Encoding
Zero 0 0 0 0000 00000

Smallest Positive (nonzero)

Largest denormalized

Smallest positive normalized

One 1

Largest odd integer

Largest finite number

Infinity — — +00

Page 3 of 11

Problem 3. (8 points):

Consider the source code below, where Mand N are constants declared with #def i ne.

int arrayl[M[N;
int array2[N[M;

int copy(int i, int j)
{

}

arrayl[i][j] = array2[j][i];

Suppose the above code generates the following assembly code:

copy:
pushl %bp
novl %esp, Yebp
pushl %ebx

nmovl 8(%ebp), ¥Yecx

nmovl 12(%ebp) , %ebx

| eal (%ecx, %ecx, 8), ¥edx

sal | $2, %edx

| eal (%ebx, %bx, 2), %eax

sal | $2, %eax

nmovl array2(%ax, %ecx, 4), ¥%eax
novl %ax, arrayl(%dx, %ebx, 4)

popl %ebx

novl %ebp, Yesp
popl %ebp

ret

What are the values of Mand N?

Page 4 of 11

Problem 4. (12 points):

Consider the following C declarations:

typedef struct {
char nane[5] ;
unsi gned short type;

}

i nt nodel ;
char col or;
doubl e price;

Product _Struct1;

typedef struct {

char *namne;
unsi gned short type;
char col or;
unsi gned short nodel ;
fl oat price;
Product _Struct 2;

}

t ypedef union {

unsi gned i nt product _id;
Product _Struct1 one;
Product _Struct2 two;

Pr oduct _Uni on;

A. Using the templates below (allowing a maximum of 24 bytes), indicate the allocation of data for

structs of type Product _Struct 1 and Product _Struct 2. Mark off and label the areas for
each individual element (arrays may be labeled as a single element). Cross hatch the partsthat are
allocated, but not used. Assumethe Linux alignment rules discussed in class.

Pr oduct _Struct 1:

0 1 2 3 45 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 23
S

B T e S T T i T e Tl (e S e S
Pr oduct _Str uct 2;

0 1 2 3 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20 21 22 23
T S T e I S S T S S S -

S S

Page 5 of 11

B. How many bytes are allocated for objects of type Pr oduct _Struct 1, Product Struct 2 and
Pr oduct _Uni on, respectively?

(@) si zeof (Product _Structl)

(b) si zeof (Product _Struct 2)

(c) si zeof (Product _Uni on)

C. Now consider the following C code fragment:

void init(Product_Uni on *p)
{

/[* This will zero all the space allocated for *p */
bzero((void *)p, sizeof(Product_Union));

p- >one. type = Oxbeef;

p- >one. nodel = 0x10302ace;
p- >one. col or = 0x8a;
p- >one. price = 1.25;

strcpy (p->one.nane, "abcdef");
/* "a = 0x61 b’ 0x62 ’'c’ 0x63
'd = 0x64 e’ 0x65 ' f’ 0x66 */

After this code has run, please give the value of each element of Pr oduct _Uni on listed below.
Assume that this code is run on a Little-Endian machine such as a Linux/x86 machine. You must give
your answer in hexadecimal format. Be careful about byte ordering!

(@) p->product _id = 0x
(b) p->two. name = 0x
(c) p->two. type = 0x
(d) p->two.color = 0x
(e) p->two. nodel = 0x

Page 6 of 11

Problem 5. (6 points):

This problem tests your ability of matching assembly code to the corresponding C pointer code. Note that
some of the C code below doesn’t do anything useful.

int fund4(int ap, int bp)

{ .
int a = ap;
int b = bp;
return *(& + b); pushl %bp
} novl %esp, %ebp
subl $24, %sp
int fun5(int *ap, int bp) novl 12(%ebp), %edx
{ movl 8(%bp), %eax
int *a = ap; nmovl %eax, - 4(Yebp)
int b = bp; novl (% dx), %eax
return *(a + b); sal | $2, %eax
} movl -4(%ax, %ebp), Yeax
novl % ebp, Yesp
int fun6(int ap, int *bp) popl %ebp
{ ret
int a = ap;
int b = *bp;
return *(& + b);
}
Which of the functions compiled into the assembly code shown?
A)fun4 B) f un5 C)fun6

Page 7 of 11

Problem 6. (12 points):

This problem tests your understanding of the stack discipline and byte ordering. Consider the following C
functions and assembly code:

voi d check _password()
{
char buf[8];
scanf ("%", buf);
if(0 !'= string _conpare(buf, "Biggles"))
{
exit(1);
}
}

int main()

{
printf("Enter your password: ");
check_password();
printf("Welcome to ny evil lair!\n");
return O;

}

80484ac <check_passwor d>:

80484ac: 55 push %ebp

80484ad: 89 e5 nov Y%esp, Y%ebp

80484af : 83 ec 24 sub $0x24, Y%esp

80484b2: 53 push %ebx

80484b3: 83 c4 8 add $OxffFfffff8, %esp
80484h6: 8d 5d f8 | ea Oxfffffff8(%bp), Yebx
80484h9: 53 push %ebx

80484ba: 68 78 85 04 08 push $0x8048578

80484bf : e8 a0 fe ff ff cal | 8048364 <scanf >
80484c4: 83 c4 8 add $OxffFfffff8, Y%esp
80484c7: 68 7b 85 04 08 push $0x804857b

80484cc: 53 push %ebx

80484cd: e8 be ff ff ff cal | 8048490 <string_conpare>
80484d2: 83 c4 20 add $0x20, Y%esp

80484d5: 85 cO0 t est %eax, Yeax

80484d7: 74 Oa je 80484e3 <check_passwor d+0x37>
80484d9: 83 c4 f4 add $Oxfffffff4, Y%esp
80484dc: 6a 01 push $0x1

80484de: e8 cl fe ff ff cal | 80483a4 <exit>
80484e3: 8b 5d d8 nov oxffffffd8(%bp), Yebx
80484e6: 89 ec nov %ebp, Y%esp

80484e8: 5d pop %ebp

80484e9: c3 ret

Page 8 of 11

Here are some notes to help you work the problem:

e scanf("%", buf) reads an input string from the standard input stream (stdin) and stores it at
address buf (including the terminating \ O character). It does not check the size of the destination
buffer.

e string_.conpare(sl, s2) returns 0 if sl equals s2.
e exit (1) halts execution of the current process without returning.

e Recall that Linux/x86 machines are Little Endian.

You may find the following diagram helpful to work out your answers. However, when grading we will not
consider anything that you write in it.

0x08
0x04
ebp — 0x00
Oxfc
0xf8
Oxf4
0xf0
Oxec
Oxe8
Oxe4
Oxe0
Oxdc
0xd8
Oxd4
0xdo

Page 9 of 11

A. Circle the address (relative to ebp) of the following items. Assume that the code has just finished
executing the prolog for check_passwor d (through the push instruction at 0x80484b2).

returnaddress: 0x08 0x04 Ox00 Oxfc Oxf8 Oxf4 OxfO ... Oxdc Oxd8 Oxd4 OxdO
saved Yebp: 0x08 O0x04 Ox00 Oxfc Oxf8 Oxf4 OxfO ... Oxdc Oxd8 Oxd4 OxdO
&buf : 0x08 0x04 O0x00 Oxfc Oxf8 Oxf4 OxfO ... Oxdc Oxd8 Oxd4 OxdO
saved Y%ebx: 0x08 O0x04 Ox00 Oxfc Oxf8 Oxf4 OxfO ... Oxdc Oxd8 Oxd4 OxdO
%esp: 0x08 O0x04 O0x00 Oxfc Oxf8 Oxf4 OxfO ... Oxdc Oxd8 Oxd4 OxdO

B. Let us enter the string “Bi ggl eswort h” (not including the quotes) as a password. Inside the
check_passwor d function scanf will read this string from stdin, writing it value into buf . Af-
terwards what will be the value in the 4-byte word pointed to by %&bp? You should answer in
hexadecimal notation.

The following table shows the hexadecimal value for relevant ASCII characters.

Character | Hex value || Character | Hex value
B 0x42 i 0x69
g’ 0x67 " 0Ox6¢c
‘e’ 0x65 'S’ 0x73
"w ox77 "o’ Ox6f
r’ 0x72 t Ox74
"h 0x68 \0 0x00

(%ebp) = Ox

C. The push instruction at 0x80484b2 saves the value of the callee-save register %ebx on the stack.
Give the address of the instruction that restores the value of %&bx. You should answer in hexadecimal
notation.

0x

Page 10 of 11

Problem 7. (6 points):

This problem tests your understanding of how f or loops in C relate to IA32 machine code. Consider the
following 1A32 assembly code for a procedure f oo() :

f oo:
pushl %bp
movl %esp, Yebp
movl 16(%bp) , %ecx
nmovl 12(%sbp), %eax
nmovl 8(%ebp), ¥%edx
cnpl %ecx, %edx
jl .L19

.L21:
addl %edx, %eax
decl %edx
cnpl %ecx, %edx
jge .L21

.L19:
movl %ebp, Yesp
popl %ebp
ret

Based on the assembly code, fi Il in the blanks below in its corresponding C source code. (Note: you may only use
symbolic variables z, y, z, i, and result, from the source code in your expressions below —do not use register
names.)

int foo(int x, int y, int z)
{

int i, result;

result = ;

for (i = ; ;) A

result = ;

}

}

return result;

Page 11 of 11

