Carnegie Mellon

Concurrent Programming

15-213 / 18-213: Introduction to Computer Systems
231 Lecture, Nov. 14, 2013

Instructors:
Randy Bryant, Dave O’Hallaron, and Greg Kesden

Carnegie Mellon

Concurrent Programming is Hard!

m The human mind tends to be sequential
m The notion of time is often misleading

m Thinking about all possible sequences of events in a
computer system is at least error prone and
frequently impossible

Carnegie Mellon

Concurrent Programming is Hard!

m Classical problem classes of concurrent programs:

" Races: outcome depends on arbitrary scheduling decisions
elsewhere in the system

= Example: who gets the last seat on the airplane?
= Deadlock: improper resource allocation prevents forward progress
= Example: traffic gridlock

= |jvelock / Starvation / Fairness: external events and/or system
scheduling decisions can prevent sub-task progress

= Example: people always jump in front of you in line

m Many aspects of concurrent programming are beyond the
scope of 15-213

= but, notall ©

Carnegie Mellon

Reminder: Iterative Echo Server

Client Server
[3\
socket socket
bind > open_listenfd
open_clientfd < l
listen
Connection l /
request
K connect [Tt TTToC > accept <
v v
: » rio writen »rio readlineb/*
Client / . _
Server))
Sessi Y A/ Await connection
ession rio readlineb [+ rio_writen request from
next client
\ 4 v
close @ [----- EQE ----- >rio_;eadlineb
\ 4

close

Carnegie Mellon

Iterative Servers

m Iterative servers process one request at a time

client 1 server client 2
Connect .. >
accept| e connect
_ JR
write [read» ________________________ write
call read ----- P
PIPPRRPPTT L ; aunm call read
ret read write ~
close CIose
................ S
accept > Wait for Client 1
read
ke _
"~ % |ret read

Carnegie Mellon

Where Does Second Client Block?

m Second client attemptsto = Call to connect returns

connect to iterative server = Even though connection not
yet accepted

Client _
, = Server side TCP manager
socket gueues request
= Feature known as “TCP
listen backlog”
open_clientfd m Call to rio_writen returns
Connection = Server side TCP manager
request buffers input data
connect [T TTTTTTToC > . .
\ I m Call to rio_readlineb
rio writen > bIOCkS
I = Server hasn’t written
rio readlineb [« anything for it to read yet.

Fundamental Flaw of Iterative Servers

client 1 server client 2
Connect .. >
accept| e connect
write [read, R write
call read| . PR T
PIPPRRPPTT L ; aunm call read
ret read write

User goes Server blocks
out to lunch waiting for

_ data from Client 2 blocks
Client 1 blocks . "

i’ Client 1 waiting to read
waiting for user |

from server

to type in data

m Solution: use concurrent servers instead

= Concurrent servers use multiple concurrent flows to serve multiple
clients at the same time

Carnegie Mellon

Server concurrency (3 approaches)

Allow server to handle multiple clients simultaneously

m 1. Processes
= Kernel automatically interleaves multiple logical flows
= Each flow has its own private address space

m 2. Threads

= Kernel automatically interleaves multiple logical flows
= Each flow shares the same address space

m 3. 1/0 multiplexing with select ()
" Programmer manually interleaves multiple logical flows
= All flows share the same address space
= Relies on lower-level system abstractions

Concurrent Servers: Multiple Processes

m Spawn separate process for each client

client 1

call connect

<
ret connect

call fgets

User goes
out to lunch

Client 1 blocks
waiting for user
to type in data

call read

fork

server

ret accept

fork

call accept

ret accept

v call

client 2

call connect

ret connect
call fgets

write

call read

read
close end read
! lclose

Carnegie Mellon

Review: Iterative Echo Server

int main(int argc, char **argv)
{
int listenfd, connfd;
int port = atoi(argv([1l]);
struct sockaddr in clientaddr;
int clientlen = sizeof(clientaddr) ;

listenfd = Open listenfd(port);

while (1) {
connfd = Accept(listenfd, (SA *)&clientaddr, é&clientlen)
echo (connfd) ;
Close (connfd) ;

}
exit (0) ;

= Accept a connection request
*" Handle echo requests until client terminates

10

Carnegie Mellon

Process-Based Concurrent Echo Server

int main(int argc, char **argv)
{
int listenfd, connfd;
int port = atoi(argv[1l])
struct sockaddr in clientaddr;
int clientlen=sizeof (clientaddr) ;

Signal (SIGCHLD, sigchld handler);
listenfd = Open listenfd (port) ;
while (1) {

connfd = Accept(listenfd, (SA

if (Fork() == 0) {
Close(listenfd); /* Child
echo (connfd) ; /* Child
Close (connfd) ; /* Child
exit (0); /* Child

}

Fork separate process for
each client

Does not allow any
communication between
different client handlers

*) &clientaddr, &clientlen);
closes its listening socket */
services client */

closes connection with client */
exits */

Close (connfd) ; /* Parent closes connected socket (important!) */

1"

Process-Based Concurrent Echo Server
(cont)

void sigchld handler (int sig)

{
while (waitpid(-1, 0, WNOHANG) > 0)

return;

= Reap all zombie children

12

Carnegie Mellon

Process Execution Model

Connection Requests
Listening
Server
Process
Client 1 Client 2
Client 1data | Server Server Client 2 data
Process Process

= Each client handled by independent process
" No shared state between them
= Both parent & child have copies of listenfd and connfd

= Parent must close connfd
= Child should close listenfd

13

Carnegie Mellon

Concurrent Server: accept lllustrated

listenfd (3)
1. Server blocks in accept,
Client l T Server waiting for connection
clientfd request on listening
descriptor 1istenfd
Connection listen£fd (3)
request . . 2. Client makes connection
Client i T Server request by calling connect
clientfd
listenfd (3)
o 3. Server returns connfd from
Server accept. Forks child to handle
client. Connection is now
Server established between clientfd
Client l) R L Child and connfd

clientfd connfd (4)

14

Carnegie Mellon

Implementation Must-dos With
Process-Based Designs

m Listening server process must reap zombie children
" to avoid fatal memory leak

m Listening server process must close its copy of connfd

= Kernel keeps reference for each socket/open file
= After fork, refcnt (connfd) = 2
" Connection will not be closed until refcnt (connfd) == 0

15

Carnegie Mellon

Pros and Cons of Process-Based Designs

m + Handle multiple connections concurrently

m + Clean sharing model
= descriptors (no)
= file tables (yes)
= global variables (no)

m + Simple and straightforward
m — Additional overhead for process control

m — Nontrivial to share data between processes
= Requires IPC (interprocess communication) mechanisms
= FIFO’s (named pipes), System V shared memory and semaphores

16

Approach #2: Multiple Threads

m Very similar to approach #1 (multiple processes)
= but, with threads instead of processes

17

Carnegie Mellon

Traditional View of a Process
m Process = process context + code, data, and stack

Process context Code, data, and stack

stack

Program context: SP
Data registers
Condition codes

shared libraries

Stack pointer (SP) brk — :

Program counter (PC) run-time heap
Kernel context: read/write data

VM structures PC — read-only code/data

Descriptor table
brk pointer

18

Carnegie Mellon

Alternate View of a Process

m Process = thread + code, data, and kernel context

Program counter (PC) Kernel context:

VM structures
Descriptor table
brk pointer

Thread (main thread) Code and Data
i_ ___________________ : shared libraries
I stack :
: SP brk run-time heap
! Thread context: | read/write data
l Data registers : PC — read-only code/data
: Condition codes ! .
: Stack pointer (SP) I
| |
I I
|

19

A Process With Multiple Threads

m Multiple threads can be associated with a process

® Each thread has its own logical control flow

® Each thread shares the same code, data, and kernel context

= Share common virtual address space (inc. stacks)

= Each thread has its own thread id (TID)

Thread 1 (main thread)

Shared code and data

stack 1

shared libraries

run-time heap

Thread 1 context:
Data registers
Condition codes
SP1
PC1

read/write data

Thread 2 (peer thread)

stack 2

read-only code/data

Kernel context:
VM structures
Descriptor table
brk pointer

Thread 2 context:
Data registers
Condition codes
SP2
PC2

Carnegie Mellon

20

Carnegie Mellon

Logical View of Threads

m Threads associated with process form a pool of peers
= Unlike processes which form a tree hierarchy

Threads associated with process foo Process hierarchy

® 7
(P1)

OXOXO),
_____________________ | (o
®

“a| shared code, data
and kernel context

*
*
*
*
*
-
*

21

Carnegie Mellon

Thread Execution

m Single Core Processor = Multi-Core Processor

= Simulate parallelism by "= Can have true
time slicing parallelism
Thread A Thread B Thread C Thread A Thread B Thread C

Run 3 threads on 2 cores

22

Carnegie Mellon

Concurrency

m Two threads are concurrent if their flows overlap in
time

m Otherwise, they are sequential

m Examples: Thread A Thread B Thread C
* Concurrent: A&B,A&C | |/
= Sequential: B& C I
Time | T I """

23

Carnegie Mellon

Threads vs. Processes

m How threads and processes are similar
" Each has its own logical control flow
= Each can run concurrently with others (possibly on different cores)
= Each is context switched

m How threads and processes are different
" Threads share code and some data

= Processes (typically) do not

" Threads are somewhat less expensive than processes

= Process control (creating and reaping) twice as expensive as thread
control

= Linux numbers:
— ~20K cycles to create and reap a process
— ~10K cycles (or less) to create and reap a thread

24

Posix Threads (Pthreads) Interface

m Pthreads: Standard interface for ~60 functions that
manipulate threads from C programs
" Creating and reaping threads
= pthread create()
= pthread join()
= Determining your thread ID
= pthread self ()
" Terminating threads
= pthread cancel ()
= pthread exit ()
= exit () [terminates all threads], RET [terminates current thread]
= Synchronizing access to shared variables
= pthread mutex init

= pthread mutex [un]lock

25

Carnegie Mellon

The Pthreads "hello, world" Program

/*
* hello.c - Pthreads "hello, world" program
*/
#include "csapp.h" :
Thread attributes
void *thread(void *vargp) ; (usually NULL)
int main() { Th
read arguments
pthread t tid; / (Voidg*p)

Pthread create(&tid, NULL, thread, NULL) ;

Pthread join(tid, NULL);
} return value

(void **p)

/* thread routine */

void *thread(void *vargp) ({
printf ("Hello, world!\n");
return NULL;

26

Carnegie Mellon

Execution of Threaded “hello, world”

main thread

call Pthread_create()
Pthread_create() returns

call Pthread_join()

printf ()
main thread waits for

return NULL;
peer thread to terminate

(peer thread
terminates)

Pthread_join() returns |«

exit ()

. v
terminates
main thread and
any peer threads

27

Carnegie Mellon

Thread-Based Concurrent Echo Server

int main (int argc, char **argv) {
int port = atoi(argv[1l]);
struct sockaddr in clientaddr;
int clientlen=sizeof (clientaddr) ;
pthread t tid;

int listenfd = Open listenfd(port);
while (1) {
int *connfdp = Malloc(sizeof (int));
*connfdp = Accept(listenfd,

(SA *) &clientaddr, é&clientlen);
Pthread create(&tid, NULL, echo thread, connfdp);

= Spawn new thread for each client
" Pass it copy of connection file descriptor
= Note use of Malloc()!

= Without corresponding Free() 28

Thread-Based Concurrent Server (cont)

/* thread routine */

void *echo thread(void *vargp)

{
int connfd = *((int *)vargp);
Pthread detach(pthread self());
Free (vargp) ;
echo (connfd) ;
Close (connfd) ;
return NULL;

" Run thread in “detached” mode
= Runs independently of other threads
= Reaped automatically (by kernel) when it terminates

" Free storage allocated to hold clientfd
= “Producer-Consumer” model

29

Carnegie Mellon

Threaded Execution Model

Connection Requests

Listening
Server

i Client 2
Client 1 data (;hent 1 S;T'Cer Client 2 data
> Server ~

= Multiple threads within single process

= Some state between them
= e.g., file descriptors

30

Carnegie Mellon

Potential Form of Unintended Sharing

while (1) {
int connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
Pthread create(&tid, NULL, echo thread, (void *) é&connfd);

main thread

Main thread stack

connfd = connfd, connfd

Peer, stack
° vargp

...................... R Peer, stack
\connfd = *vargp

O vargp

v Why would both copies of vargp point to same location?

3

Carnegie Mellon

Could this race occur?

Main Thread
int i; void *thread(void *vargp)
for (1 = 0; i < 100; i++) { {
Pthread create(&tid, NULL, int 1 = *((int *)vargp):
thread, &i); Pthread detach(pthread self());
} save value (i) ;
return NULL;
}

m Race Test
" |f no race, then each thread would get different value of i
= Set of saved values would consist of one copy each of 0 through 99

32

Experimental Results

No Race

2

0 2 46 8101214161820222426283032343638404244464850525456586062646668707274767880828486889092949698

1
0

Single core laptop

3

gl

1

o L ANRNNR RNARNRN NRNARN NRRARA AR AR R

0 2 46 8101214161820222426283032343638404244464850525456586062646668707274767880828486889092949698

Multicore server
14

12

10

b L ‘ 1111111

0 2 46 8101214161820222426283032343638404244464850525456586062646668707274767880828486889092949698

m The race can really happen!

33

Issues With Thread-Based Servers

m Must run “detached” to avoid memory leak
= At any point in time, a thread is either joinable or detached
= Joinable thread can be reaped and killed by other threads
= must be reaped (with pthread join)to free memory resources
" Detached thread cannot be reaped or killed by other threads
= resources are automatically reaped on termination
= Default state is joinable
» usepthread detach (pthread self ()) to make detached

m Must be careful to avoid unintended sharing

" For example, passing pointer to main thread’s stack
= Pthread create(&tid, NULL, thread, (void *)&connfd);

m All functions called by a thread must be thread-safe
= (next lecture)

34

Carnegie Mellon

Pros and Cons of Thread-Based Designs

m + Easy to share data structures between threads
= e.g., logging information, file cache

m + Threads are more efficient than processes

m — Unintentional sharing can introduce subtle and hard-
to-reproduce errors!

" The ease with which data can be shared is both the greatest
strength and the greatest weakness of threads

" Hard to know which data shared & which private
" Hard to detect by testing

= Probability of bad race outcome very low
= But nonzero!

" Future lectures

35

Approaches to Concurrency

m Processes
" Hard to share resources: Easy to avoid unintended sharing
= High overhead in adding/removing clients

m Threads

= Easy to share resources: Perhaps too easy
" Medium overhead
"= Not much control over scheduling policies
= Difficult to debug
= Event orderings not repeatable
m |/O Multiplexing
" Tedious and low level
= Total control over scheduling
= Very low overhead
= Cannot create as fine grained a level of concurrency

" Does not make use of multi-core
36

