Carnegie Mellon

Web Services

15-213 / 18-213: Introduction to Computer Systems
22" Lecture, Nov. 12, 2013

Instructors:
Randy Bryant, Dave O’Hallaron, and Greg Kesden

Web History

m 1989:
= Tim Berners-Lee (CERN) writes internal proposal to develop a
distributed hypertext system
= Connects “a web of notes with links”

= Intended to help CERN physicists in large projects share and
manage information

m 1990:

" Tim BL writes a graphical browser for Next machines

Web History (cont)

m 1992
= NCSA server released

= 26 WWW servers worldwide

m 1993
" Marc Andreessen releases first version of NCSA Mosaic browser

" Mosaic version released for (Windows, Mac, Unix)
= Web (port 80) traffic at 1% of NSFNET backbone traffic
= QOver 200 WWW servers worldwide

m 1994

" Andreessen and colleagues leave NCSA to form “Mosaic
Communications Corp” (predecessor to Netscape)

Carnegie Mellon

Web Servers

HTTP request

Web
client
(browser)

Web
server

m Clients and servers communicate
using the HyperText Transfer

Protocol (HTTP) HTTP response

= (Client and server establish TCP (content)
connection

= Client requests content

= Server responds with requested

content HTTP Web content
= (Client and server close connection
(eventually TCP |streams
m Current versionis HTTP/1.1
= RFC 2616, June, 1999. IP Datagrams

http://www.w3.0org/Protocols/rfc2616/rfc2616.html

Web Content

m Web servers return content to clients

= content: a sequence of bytes with an associated MIME (Multipurpose
Internet Mail Extensions) type

m Example MIME types
" text/html HTML document
" text/plain Unformatted text
" application/postscript Postcript document
" image/gif Binary image encoded in GIF format
" image/Jjpeg Binary image encoded in JPEG format

Carnegie Mellon

Static and Dynamic Content

m The content returned in HTTP responses can be either
static or dynamic

= Static content: content stored in files and retrieved in response to
an HTTP request

= Examples: HTML files, images, audio clips
= Request identifies which content file

= Dynamic content: content produced on-the-fly in response to an
HTTP request

= Example: content produced by a program executed by the
server on behalf of the client

= Request identifies which file containing executable code

m Bottom line: (most) Web content is associated with a file
that is managed by the server

URLs and how clients and servers use them

m Unique name for a file: URL (Universal Resource Locator)
m Example URL: http://www.cmu.edu:80/index.html

m Clients use prefix (http://www.cmu.edu: 80) to infer:
= What kind (protocol) of server to contact (HTTP)
= Where the serveris (www.cmu.edu)
= What port it is listening on (80)

m Servers use suffix (/index.html) to:
= Determine if request is for static or dynamic content.
= No hard and fast rules for this
= Convention: executables reside in cgi-bin directory
" Find file on file system
= |nitial “/” in suffix denotes home directory for requested content.

= Minimal suffix is “/”, which server expands to configured default
filename (usually, index.html)

Example of an HTTP Transaction

unix> telnet www.cmu.edu 80 Client: open connection to server
Trying 128.2.10.162... Telnet prints 3 lines to the terminal
Connected to www.cmu.edu.
Escape character is '*]'.

GET / HTTP/1.1 Client: request line

host: www.cmu.edu Client: required HTTP/1.1 HOST header
Client: empty line terminates headers .

HTTP/1.1 301 Moved Permanently Server: response line

Location: http://www.cmu.edu/index.shtml Client should try again

Connection closed by foreign host. Server: closes connection
unix> Client: closes connection and terminates

Carnegie Mellon

Example of an HTTP Transaction, Take 2

unix> telnet www.cmu.edu 80
Trying 128.2.10.162...
Connected to www.cmu.edu.
Escape character is '*]'.
GET /index.shtml HTTP/1.1
host: www.cmu.edu

HTTP/1.1 200 OK
Date: Fri, 29 Oct 2010 19:41

Client: open connection to server
Telnet prints 3 lines to the terminal

Client: request line

Client: required HTTP/1.1 HOST header
Client: empty line terminates headers .
Server: responds with web page

:08 GMT

Server: Apache/1.3.39 (Unix) mod pubcookie/3.3.3

Transfer-Encoding: chunked
Content-Type: text/html

Lots of stuff

Connection closed by foreign host. Server: closes connection

unix>

Client: closes connection and terminates

HTTP Requests

m HTTP request is a request line, followed by zero or more
request headers

m Request line: <method> <uri> <version>

" <method> isoneof GET, POST, OPTIONS, HEAD, PUT,
DELETE, or TRACE

" <uri>istypically URL for proxies, URL suffix for servers
= A URLis a type of URI (Uniform Resource Identifier)
= See http://www.ietf.org/rfc/rfc2396.txt
" <version>is HTTP version of request (HTTP/1.0 or HTTP/1.1)

10

HTTP Requests (cont)

m HTTP methods:
" GET: Retrieve static or dynamic content
= Arguments for dynamic content are in URI
= Workhorse method (99% of requests)
= POST: Retrieve dynamic content
= Arguments for dynamic content are in the request body
= OPTIONS: Get server or file attributes
" HEAD: Like GET but no data in response body
= PUT: Write a file to the server!
" DELETE: Delete a file on the server!
= TRACE: Echo request in response body
= Useful for debugging

m Request headers: <header name>: <header data>
" Provide additional information to the server

1"

HTTP Versions

m Major differences between HTTP/1.1 and HTTP/1.0
= HTTP/1.0 uses a hew connection for each transaction
= HTTP/1.1 also supports persistent connections
= multiple transactions over the same connection
» Connection: Keep-Alive
= HTTP/1.1 requires HOST header

» Host: www.cmu.edu

= Makes it possible to host multiple websites at single Internet host
= HTTP/1.1 supports chunked encoding (described later)

= Transfer-Encoding: chunked
= HTTP/1.1 adds additional support for caching

12

HTTP Responses

m HTTP response is a response line followed by zero or more
response headers, possibly followed by data

m Response line:
<version> <status code> <status msg>
= <version>is HTTP version of the response
= <status code> is numeric status
= <status msg> is corresponding English text

= 200 OK Request was handled without error
= 301 Moved Provide alternate URL

= 403 Forbidden Server lacks permission to access file
= 404 Not found Server couldn’t find the file

m Response headers: <header name>: <header data>

" Provide additional information about response
" Content-Type: MIME type of content in response body
" Content-Length: Length of contentin response body

13

Carnegie Mellon

GET Request to Apache Server
From Firefox Browser

URI is just the suffix, not the entire URL

GET |/~bryant/test.html |HTTP/1.1

Host: www.cs.cmu.edu

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US; rv:
1.9.2.11) Gecko/20101012 Firefox/3.6.11

Accept: text/html,application/xhtml+xml,application/
xml;g=0.9,*/*;q=0.8

Accept-Language: en-us,en;g=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: ISO-8859-1,utf-8;9=0.7,*;g=0.7
Keep-Alive: 115

Connection: keep-alive

CRLF (\r\n)

14

GET Response From Apache Server

HTTP/1.1 200 OK

Date: Fri, 29 Oct 2010 19:48:32 GMT
Server: Apache/2.2.14 (Unix) mod ssl/2.2.14 OpenSSL/0.9.7m
mod pubcookie/3.3.2b PHP/5.3.1
Accept-Ranges: bytes

Content-Length: 479

Keep-Alive: timeout=15, max=100
Connection: Keep-Alive

Content-Type: text/html

<html>

<head><title>Some Tests</title></head>

<body>
<hl>Some Tests</hl>
</body>
</html>

15

Carnegie Mellon

Proxies

m A proxyis an intermediary between a client and an origin server
" To the client, the proxy acts like a server
" To the server, the proxy acts like a client

1. Client request 2. Proxy request
>

Origin
Server

4. Proxy response 3. Server response

16

Carnegie Mellon

Why Proxies?

m Can perform useful functions as requests and responses pass by
= Examples: Caching, logging, anonymization, filtering, transcoding

Request foo.html

Request foo.html

Origin
foo . html Server

Request foo.hty

Slower more
expensive
foo.html global network

Fast inexpensive local network

17

Carnegie Mellon

Tiny Web Server

m Tiny Web server described in text
" Tiny is a sequential Web server

= Serves static and dynamic content to real browsers
= text files, HTML files, GIF and JPEG images

= 226 lines of commented C code

= Not as complete or robust as a real web server

18

Tiny Operation

m Accept connection from client
m Read request from client (via connected socket)

m Split into method / uri / version
" |f not GET, then return error

m If URI contains “cgi-bin” then serve dynamic content
= (Would do wrong thing if had file “abcgi-bingo.html”)
" Fork process to execute program

m Otherwise serve static content
= Copy file to output

19

Tiny Serving Static Content

/* Send response headers to client */ From tiny.c
get filetype(filename, filetype);
sprintf (buf, "HTTP/1.0 200 OK\r\n") ;
sprintf (buf, "%$sServer: Tiny Web Server\r\n", buf);
sprintf (buf, "%$sContent-length: %d\r\n", buf, filesize);
sprintf (buf, "%$sContent-type: %$s\r\n\r\n",
buf, filetype);
Rio writen(fd, buf, strlen(buf));

/* Send response body to client */

srcfd = Open(filename, O RDONLY, O0);

srcp = Mmap (O, filesize,_PROT_READ, MAP PRIVATE, srcfd, 0);
Close(srcfd) ;

Rio writen(fd, srcp, filesize);

Munmap (srcp, filesize);

= Serve file specified by filename

= Use file metadata to compose header
= “Read” file via mmap

= Write to output

20

Carnegie Mellon

Serving Dynamic Content

m Client sends request to server GET /cgi-bin/env.pl HTTP/1.1

m If request URI contains the Client » Server
string “/cgi-bin”, then the
server assumes that the
request is for dynamic content

21

Carnegie Mellon

Serving Dynamic Content (cont)

m The server creates a child
Server
process and runs the
program identified by the URI
in that process fork/exec

@

22

Carnegie Mellon

Serving Dynamic Content (cont)

m The child runs and generates Client) _—
the dynamic content Content k

Content
m The server captures the
content of the child and @
forwards it without

modification to the client

23

Carnegie Mellon

Issues in Serving Dynamic Content

m How does the client pass program Request
arguments to the server? 7

Client |Content | Server
m How does the server pass these ! = (
arguments to the child?

m How does the server pass other info Content Create
relevant to the request to the child?

m How does the server capture the
content produced by the child?

m These issues are addressed by the
Common Gateway Interface (CGl)
specification.

24

Carnegie Mellon

m Because the children are written according to the CGI
spec, they are often called CG/ programs or CGI scripts.

m However, CGI really defines a simple standard for
transferring information between the client (browser),
the server, and the child process.

m CGl is the original standard for generating dynamic
content. Has been largely replaced by other, faster
techniques:

= E.g., fastCGIl, Apache modules, Java servlets
= Avoid having to create process on the fly.

25

The add.com Experience

input URL host

port CGI program args
N\

/ e
[€ htip://greatwhite.ics.cs.cmu.edu:15283/cgi-b n/ﬁderﬁ n1=15213&n]=18243 - Windaf(Internet Explorer RW ' @J@&J
@)~ lg http:,-",:"greatwhite.ics.cs.cmu.edu:1.5213,:‘;gi-;)i;l.-";dcler?n1= 1521381112‘:‘18;-‘1-3 o v ‘ v ‘ X ’ ‘ Go,g:{:‘ L v
Eile Edit VMiew Favorites Tools Help
Gougle EI *J Search -« (8~ s~ | @ Share~ | ® Sy~ Signln~ @;Convert v [B) Select
Wk @ http://greatwhite.ics.cs.cmu.edu:15213/cgi-bin/a... {7’

v m v @ v g}ogagev N.('}‘Tgols v ”

Welcome to add.com: THE Internet addition portal.

' The answer 1s: 15213 + 18243 -=> 33456

‘ Thanks for wisiting!

|
L£10ne

\ € Internet | Protected Mode: On
E 3 e,

& 100% v

Output page

26

Serving Dynamic Content With GET

m Question: How does the client pass arguments to the server?

m Answer: The arguments are appended to the URI

m Can be encoded directly in a URL typed to a browser or a URL
in an HTML link
" http://add.com/cgi-bin/adder?nl=15213&n2=18243
= adder is the CGI program on the server that will do the addition.
= argument list starts with “?2”

= arguments separated by “&”
= spaces represented by “+” or “%20”

27

Serving Dynamic Content With GET

m URL:
" cgi-bin/adder?nl=15213&n2=18243

m Result displayed on browser:

Welcome to add.com: THE Internet addition portal. The
answer is: 15213 + 18243 -> 33456
Thanks for visiting!

28

Serving Dynamic Content With GET

m Question: How does the server pass these arguments to
the child?
m Answer: In environment variable QUERY_STRING

= Asingle string containing everything after the “?”
" For add: QUERY STRING = “n1=15213&n2=18243"

From adder.c

if ((buf = getenv("QUERY STRING")) !'= NULL) ({
if (sscanf (buf, "nl=%d&n2=%d\n", &nl, &n2) == 2)
sprintf (msg, "%d + %d -> %d\n", nl, n2, nl+n2);
else

sprintf (msg, "Can't parse buffer '%s'\n", buf);

29

Additional CGIl Environment Variables

m General

" SERVER SOFTWARE

" SERVER NAME

" GATEWAY INTERFACE (CGI version)
m Request-specific

" SERVER PORT

" REQUEST METHOD (GET, POST, etc)

" QUERY STRING (contains GET args)

" REMOTE HOST (domain name of client)

" REMOTE ADDR (IP address of client)

" CONTENT TYPE (for POST, type of data in message body, e.g.,
text/html)

" CONTENT LENGTH (length in bytes)

30

Even More CGI Environment Variables

m In addition, the value of each header of type type received
from the client is placed in environment variable HTTP type

o n

= Examples (any “-” is changed to “ ") :
= HTTP ACCEPT
= HTTP HOST
= HTTP USER AGENT

3

Serving Dynamic Content With GET

m Question: How does the server capture the content produced by the child?

m Answer: The child generates its output on stdout. Server uses dup2 to
redirect stdout to its connected socket.

= Notice that only the child knows the type and size of the content. Thus the child
(not the server) must generate the corresponding headers.

/* Make the response body */ From adder.c
sprintf (content, "Welcome to add.com: ") ;
sprintf (content, "$sTHE Internet addition portal.\r\n<p>",
content) ;
sprintf (content, "%$sThe answer is: %s\r\n<p>",
content, msqg);
sprintf (content, "%sThanks for visiting!\r\n", content);

/* Generate the HTTP response */

printf ("Content-length: %ul\r\n", (unsigned) strlen(content));
printf ("Content-type: text/html\r\n\r\n");

printf ("%s", content)

32

Serving Dynamic Content With GET

linux> telnet greatwhite.ics.cs.cmu.edu 15213

Trying 128.2.220.10...

Connected to greatwhite.ics.cs.cmu.edu (128.2.220.10).
Escape _character is _'~1'

GET /cgi-bin/adder?nl=5&n2=27 HTTP/1.1

host: greatwhite.ics.cs.cmu.edu HTTP request sent by client

= SSORLE > L e e e e e e e e e e e e
HTTP/1.0 200 OK
Server: Tiny Web Server HTTP response generated by the server

Content-type: text/html

Welcome to add.com: THE Internet addition portal.

<p>The answer is: 5 + 27 -> 32
HTTP response generated by

<p>Thanks for visiting! the CGI program

Connection closed by foreign host.

33

Tiny Serving Dynamic Content

/* Return first part of HTTP response */ From tiny.c
sprintf (buf, "HTTP/1.0 200 OK\r\n") ;
Rio writen(fd, buf, strlen(buf));
sprintf (buf, "Server: Tiny Web Server\r\n");
Rio writen(fd, buf, strlen(buf));

if (Fork() == 0) { /* child */
/* Real server would set all CGI vars here */
setenv ("QUERY STRING", cgiargs, 1);
Dup2 (fd, STDOUT FILENO); /* Redirect stdout to client */
Execve (filename, emptylist, environ);/* Run CGI prog */

}
Wait (NULL) ; /* Parent waits for and reaps child */

" Fork child to execute CGI program
" Change stdout to be connection to client
= Execute CGI program with execve

34

Carnegie Mellon

Data Transfer Mechanisms

m Standard
= Specify total length with content-length
= Requires that program buffer entire message

m Chunked

" Break into blocks
= Prefix each block with number of bytes (Hex coded)

35

Carnegie Mellon

Chunked Encoding Example

HTTP/1.1 200 OK\n

Date: Sun, 31 Oct 2010 20:47:48 GMT\n
Server: Apache/1.3.41 (Unix)\n
Keep-Alive: timeout=15, max=100\n
Connection: Keep-Alive\n
Transfer-Encoding: chunked\n
Content-Type: text/html\n

\r\n

r blaul| First Chunk: 0xd75 = 3445 bytes

<head>

.<link href="http://www.cs.cmu.edu/style/calendar.css" rel="stylesheet"
type="text/css">

</head>

.< <body id="calendar body">

<div id='calendar'><table width='100%' border='0' cellpadding='0"
cellspacing='1l' id='cal'>

</body>
</html>
\r\n

O\m\n Second Chunk: 0 bytes (indicates last chunk)

36

For More Information

m Study the Tiny Web server described in your text
" Tiny is a sequential Web server.
= Serves static and dynamic content to real browsers.
= text files, HTML files, GIF and JPEG images.
= 220 lines of commented C code.

= Also comes with an implementation of the CGlI script for the add.com
addition portal.

m See the HTTP/1.1 standard:
" http://www.w3.0rg/Protocols/rfc2616/rfc2616.html

37

