Carnegie Mellon

Network Programming

15-213 / 18-213: Introduction to Computer Systems
215t Lecture, Nov. 7, 2013

Instructors:
Randy Bryant, Dave O’Hallaron, and Greg Kesden

Carnegie Mellon

A Programmer’s View of the Internet

m Hosts are mapped to a set of 32-bit /P addresses
= 128.2.217.13

m The set of IP addresses is mapped to a set of identifiers
called Internet domain names

= 128.2.217.13 is mapped to www.cs.cmu.edu

m A process on one Internet host can communicate with a
process on another Internet host over a connection

Internet Connections

m Clients and servers communicate by sending streams of bytes
over connections:

= Point-to-point, full-duplex (2-way communication), and reliable

m A socket is an endpoint of a connection
= Socket address is an IPaddress:port pair

m A portis a 16-bit integer that identifies a process:

= Ephemeral port: Assigned automatically on client when client makes a
connection request

= Well-known port: Associated with some service provided by a server
(e.g., port 80 is associated with Web servers)

m A connection is uniquely identified by the socket addresses
of its endpoints (socket pair)
" (cliaddr:cliport, servaddr:servport)

Carnegie Mellon

Anatomy of an Internet Connection

Client socket address Server socket address
128.2.194.242:51213 :80

/ \

P
<

Connection socket pair
(128.2.194.242:51213, :80)

Client host address Server host address
128.2.194.242

51213 is an ephemeral port 80 is a well-known port
allocated by the kernel associated with Web servers

Carnegie Mellon

A Client-Server Transaction

1. Client sends request

[

Client
process

Server
process

Resource

)

4. Client 3. Server sends response 2. Server
handles handles
response request

Note: clients and servers are processes running on hosts
(can be the same or different hosts)

m Most network applications are based on the client-server
model:
= A server process and one or more client processes
= Server manages some resource
= Server provides service by manipulating resource for clients
= Server activated by request from client (vending machine analogy)

Carnegie Mellon

Clients

m Examples of client programs
= Web browsers, £tp, telnet, ssh

m How does a client find the server?

= The IP address in the server socket address identifies the host
(more precisely, an adapter on the host)

= The (well-known) port in the server socket address identifies the
service, and thus implicitly identifies the server process that performs
that service.

= Examples of well known ports
= Port 7: Echo server
= Port 22: ssh server
= Port 25: Mail server
= Port 80: http server
= Port 443: https server

Carnegie Mellon

Using Ports to Identify Services

Server host 128.2.194.242

Client host Service request for
128.2.194.242:80

(i.e., the Web server)
Client

Web server
(port 80)

v

Kernel

Echo server
(port 7)

Service request for
128.2.194.242:7

) (i.e., the echo server)
Client >

Web server
(port 80)

Echo server
(port 7)

Carnegie Mellon

Servers

m Servers are long-running processes (daemons)
" Created at boot-time (typically) by the init process (process 1)
® Run continuously until the machine is turned off

m Each server waits for requests to arrive on a well-known port
associated with a particular service
= Port 7: echo server
= Port 22: ssh server
= Port 25: mail server
" Port 80: HTTP server

m A machine that runs a server process is also often referred to
as a “server”

Carnegie Mellon

Server Examples
m Web server (port 80)

= Resource: files/compute cycles (CGl programs)
= Service: retrieves files and runs CGI programs on behalf of the client

m ssh server (22) See /etc/services fora
= Resource: terminal comprehensive list of the port

= Service: proxies a terminal on the mappings on a Linux machine

server machine and transfers files

m Mail server (25)
= Resource: email “spool” file
= Service: stores mail messages in spool file

Ill

Carnegie Mellon

Sockets Interface

m Created in the early 80’s as part of the original Berkeley
distribution of Unix that contained an early version of the
Internet protocols

m Provides a user-level interface to the network
m Underlying basis for all Internet applications

m Based on client/server programming model

10

Carnegie Mellon

Sockets

m What is a socket?
= To the kernel, a socket is an endpoint of communication

" To an application, a socket is a file descriptor that lets the
application read/write from/to the network

= Remember: All Unix I/O devices, including networks, are
modeled as files

m Clients and servers communicate with each other by
reading from and writing to socket descriptors

Client l‘ ‘l Server

clientfd serverfd

m The main distinction between regular file I/O and socket
1/0 is how the application “opens” the socket descriptors

1"

Carnegie Mellon

Overview of the Sockets Interface

Client Server
(3\
socket socket
bind > open_listenfd
open_clientfd < l
listen
Connection l /
request
L connect ["TTTTTTTTTooC > accept <
v v
Client / » rio writen Prio_readlineb¢
Server ! ! . .
Session Await connection
rio readlineb ¢ rio writen requestﬁon1
next client
v \ 4
close = [----- EOF_____ »rio_ readlineb
\ 4
close

12

Carnegie Mellon

Socket Address Structures

m Generic socket address:
= For address arguments to connect, bind, and accept

= Necessary only because C did not have generic (void *) pointers
when the sockets interface was designed

struct sockaddr {
unsigned short sa family; /* protocol family */
char sa data[l4]; /* address data. */

};

sa family

~
Family Specific

13

Carnegie Mellon

Socket Address Structures

m Internet-specific socket address:

" Must cast (sockaddr in *)to(sockaddr *)for connect,
bind, and accept

struct sockaddr in {
unsigned short sin family; /* address family (always AF INET) */
unsigned short sin port; /* port num in network byte order */
struct in addr sin_ addr; /* IP addr in network byte order */
unsigned char sin zero[8]; /* pad to sizeof (struct sockaddr) */

sin port sin_addr

AF INET o|o0o|jo0jO0|O0O|O0O]|]O0]|O

sa_family _ - J

Family Specific

sin family

14

Carnegie Mellon

Example: Echo Client and Server

On Client On Server

greatwhite> ./echoserveri 15213

linux> echoclient greatwhite.ics.cs.cmu.edu 15213

server connected to BRYANT-TP4.VLSI.CS.CMU.EDU
(128.2.213.29), port 64690

type: hello there

server received 12 bytes

echo: HELLO THERE
type: “~D

Connection closed

15

Carnegie Mellon

Echo Client Main Routine

#include "csapp.h"

/* usage: ./echoclient host port */
int main(int argc, char **argv)

{ Read input

int clientfd, port; .
line

char *host, buf[MAXLINE]
rio t rio;
host = argv[l]; port = atoi(argv[2]);
clientfd = Open clientfd(host, port);
Rio readinitb(&rio, clientfd);
Send line to printf ("type:"); fflush(stdout) ;
server - while (Fgets(buf, MAXLINE, stdin) != NULL) {
Receive line \ Rio writen(clientfd, buf, strlen(buf)) ;
» Rio readlineb (&rio, buf, MAXLINE) ;
from server =
printf ("echo:") ;
Fputs (buf, stdout);
printf ("type:"); fflush(stdout) ;

Print server
response

}
Close(clientfd) ;

exit (0) ;

16

Carnegie Mellon

Overview of the Sockets Interface

Client Server

socket socket

'

bind > open_listenfd

open_clientfd< l

listen

. J
Connection l

request
connect [T TTTTTTToC g accept

17

Echo Client: open clientfd

int open_clientfd(char *hostname, int port) ({ |

int clientfd; This function opens a connection

struct hostent *hp; from the client to the server at

struct sockaddr in serveraddr; hostname:port

if ((clientfd = socket (AF_INET, SOCK_STREAM, 0)) < 0) Create
return -1; /* check errno for cause of error */ socket

4

/* Fill in the server's IP address and port */
if ((hp = gethostbyname (hostname)) == NULL)
return -2; /* check h errno for cause of error */
bzero((char *) &serveraddr, sizeof (serveraddr)) ; Create
serveraddr.sin family = AF INET; address
bcopy ((char *)hp->h addr 1list[O0],
(char *) &serveraddr.sin addr.s_addr, hp->h length);

serveraddr.sin port = htons(port); /
/* Establish a connection with the server */
if (connect(clientfd, (SA *) &serveraddr,]
sizeof (serveraddr)) < 0) Establish
return -1; connection

return clientfd;

18

Carnegie Mellon

Echo Client: open clientfd
(socket)

m socket creates a socket descriptor on the client
= Just allocates & initializes some internal data structures
" AF INET: indicates that the socket is associated with Internet protocols
" SOCK_STREAM: selects a reliable byte stream connection
= provided by TCP

int clientfd; /* socket descriptor */

if ((clientfd = socket (AF_INET, SOCK STREAM, 0)) < 0)
return -1; /* check errno for cause of error */

. <more>

19

Carnegie Mellon

Echo Client: open clientfd
(gethostbyname)

m The client then builds the server’s Internet address

int clientfd; /* socket descriptor */
struct hostent *hp; /* DNS host entry */
struct sockaddr in serveraddr; /* server’s IP address */

/* £ill in the server's IP address and port */
if ((hp = gethostbyname (hostname)) == NULL)

return -2; /* check h errno for cause of error */
bzero((char *) &serveraddr, sizeof (serveraddr)) ; Check

serveraddr.sin family = AF INET; this out!
serveraddr.sin port = htons (port); ‘?_,————————____———————— !
bcopy ((char *)hp->h addr 1list[O0],

(char *) &serveraddr.sin_addr.s_addr, hp->h length);

20

Carnegie Mellon

A Careful Look at bcopy Arguments

/* DNS host entry structure */
struct hostent {

int h length; /* length of an address, in bytes */
char **h addr list; /* null-terminated array of in addr structs */

};

struct sockaddr_in {

struct in addr sin_addr; /* IP addr in network byte order */

}; /* Internet address structure */
struct in_addr {

unsigned int s _addr; /* network byte order (big-endian) */

};

struct hostent *hp; /* DNS host entry */
struct sockaddr in serveraddr; /* server’s IP address */

bcopy ((char *)hp->h addr 1list[0], /* src, dest */
(char *) &serveraddr.sin _addr.s_addr, hp->h length);

21

Carnegie Mellon

Echo Client: open clientfd

(connect)

m Finally the client creates a connection with the server
= Client process suspends (blocks) until the connection is created

= After resuming, the client is ready to begin exchanging messages with the
server via Unix I/O calls on descriptor client£fd

int clientfd; /* socket descriptor */
struct sockaddr in serveraddr; /* server address */
typedef struct sockaddr SA; /* generic sockaddr */

/* Establish a connection with the server */

if (connect(clientfd, (SA *) &serveraddr, sizeof (serveraddr)) < 0)
return -1;

return clientfd;

22

Echo Server: Main Routine

int main(int argc, char **argv) {
int listenfd, connfd, port, clientlen;
struct sockaddr in clientaddr;
struct hostent *hp;
char *haddrp;
unsigned short client port;

port = atoi(argv([l]); /* the server listens on a port passed
on the command line */
listenfd = open listenfd(port)

while (1) {
clientlen = sizeof(clientaddr) ;
connfd = Accept(listenfd, (SA *) &clientaddr, &clientlen);
hp = Gethostbyaddr ((const char *)&clientaddr.sin addr.s_addr,
sizeof (clientaddr.sin addr.s_addr), AF INET) ;
haddrp = inet ntoa(clientaddr.sin addr);
client port = ntohs(clientaddr.sin port);
printf ("server connected to %s (%s), port %u\n",
hp->h name, haddrp, client port);
echo (connfd) ;
Close (connfd) ;

Carnegie Mellon

Overview of the Sockets Interface

Client Server

socket socket

'

bind > open_listenfd

open_clientfd< l

listen

. J
Connection l

request
connect [T TTTTTTToC g accept

24

Carnegie Mellon

Echo Server: open listenfd

int open listenfd(int port)
{
int listenfd, optval=1;
struct sockaddr in serveraddr;

/* Create a socket descriptor */
if ((listenfd = socket (AF_INET, SOCK STREAM, 0)) < 0)
return -1;

/* Eliminates "Address already in use" error from bind. */
if (setsockopt(listenfd, SOL SOCKET, SO REUSEADDR,
(const void *) &optval , sizeof (int)) < 0)
return -1;

<more>

25

Carnegie Mellon

Echo Server: open listenfd (cont.)

/* Listenfd will be an endpoint for all requests to port
on any IP address for this host */

bzero((char *) &serveraddr, sizeof (serveraddr)) ;
serveraddr.sin family = AF INET;

serveraddr.sin addr.s_addr = htonl (INADDR ANY) ;
serveraddr.sin port = htons((unsigned short)port);

if (bind(listenfd, (SA *) &serveraddr, sizeof (serveraddr)) < 0)
return -1;

/* Make it a listening socket ready to accept
connection requests */

if (listen(listenfd, LISTENQ) < 0)
return -1;

return listenfd;

26

Carnegie Mellon

Echo Server: open listenfd
(socket)

m socket creates a socket descriptor on the server
" AF INET: indicates that the socket is associated with Internet protocols
" SOCK_STREAM: selects a reliable byte stream connection (TCP)

int listenfd; /* listening socket descriptor */

/* Create a socket descriptor */
if ((listenfd = socket (AF _INET, SOCK _STREAM, 0)) < 0)
return -1;

27

Carnegie Mellon

Echo Server: open listenfd
(setsockopt)

m The socket can be given some attributes

/* Eliminates "Address already in use" error from bind(). */
if (setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR,
(const void *) &optval , sizeof(int)) < 0)
return -1;

m Handy trick that allows us to rerun the server immediately
after we kill it
= QOtherwise we would have to wait about 15 seconds
= Eliminates “Address already in use” error from bind ()

m Strongly suggest you do this for all your servers to simplify
debugging

28

Carnegie Mellon

Echo Server: open listenfd
(initialize socket address)

m Initialize socket with server port number
m Accept connection from any IP address

struct sockaddr in serveraddr; /* server's socket addr */

/* listenfd will be an endpoint for all requests to port
on any IP address for this host */

bzero((char *) &serveraddr, sizeof (serveraddr)) ;

serveraddr.sin family = AF INET;

serveraddr.sin port = htons((unsigned short)port);

serveraddr.sin addr.s _addr = htonl (INADDR ANY) ;

m [P addr and port stored in network (big-endian) byte order

sin_port sin_addr

AF INET INADDR_AN*’ o|o0o(0|]0|O|O0]O0]O

sa family
sin family
29

Carnegie Mellon

Echo Server: open listenfd

(bind)

m bind associates the socket with the socket address we just
created

int listenfd; /* listening socket */

struct sockadd:_in serveraddr; /* server’s socket addr */

/* listenfd will be an endpoint for all requests to port
on any IP address for this host */

if (bind(listenfd, (SA *) &serveraddr, sizeof (serveraddr)) < 0)
return -1;

30

Carnegie Mellon

Echo Server: open listenfd

(lListen)

m listen indicates that this socket will accept connection
(connect) requests from clients

m LISTENQ is constant indicating how many pending requests
allowed

int listenfd; /* listening socket */

/* Make it a listening socket ready to accept connection requests */
if (listen(listenfd, LISTENQ) < 0)
return -1;
return listenfd;

}

m We're finally ready to enter the main server loop that
accepts and processes client connection requests.

3

Carnegie Mellon

Echo Server: Main Loop

m The server loops endlessly, waiting for connection
requests, then reading input from the client, and echoing
the input back to the client.

main () {
/* create and configure the listening socket */

while (1) {
/* Accept(): wait for a connection request */
/* echo(): read and echo input lines from client til EOF */
/* Close(): close the connection */

32

Carnegie Mellon

Overview of the Sockets Interface

Client Server
(3\
socket socket
bind > open_listenfd
open_clientfd < l
listen
Connection l /
request
L connect ["TTTTTTTTTooC > accept <
v v
Client / » rio writen Prio_readlineb¢
Server ! ! . .
Session Await connection
rio readlineb ¢ rio writen requestﬁon1
next client
v \ 4
close = [----- EOF_____ »rio_ readlineb
\ 4
close

33

Carnegie Mellon

Echo Server: accept

m accept () blocks waiting for a connection request

int listenfd; /* listening descriptor */
int connfd; /* connected descriptor */
struct sockaddr in clientaddr;

int clientlen;

clientlen = sizeof (clientaddr) ;
connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);

m accept returns a connected descriptor (connfd) with
the same properties as the listening descriptor
(Listenfd)

m Returns when the connection between client and server is created
and ready for I/O transfers

m All 1/0 with the client will be done via the connected socket

m accept alsofillsin client’s IP address

34

Carnegie Mellon

Echo Server: accept lllustrated

listenfd (3)
1. Server blocks in accept,
Client Server waiting for connection request
clientfd on listening descriptor
listenfd
c°““e°t'f“ listenfd(3)
request . . 2. Client makes connection request by
Client Server calling and blocking in connect
clientfd
listenfd (3)
3. Server returns connfd from
Client) , & Server accept. Client returns from connect.
clientfd conn£d (4) Connection is now established between

clientfdand connfd

35

Connected vs. Listening Descriptors

m Listening descriptor
= End point for client connection requests
" Created once and exists for lifetime of the server

m Connected descriptor
= End point of the connection between client and server

= A new descriptor is created each time the server accepts a
connection request from a client

= Exists only as long as it takes to service client

m Why the distinction?
= Allows for concurrent servers that can communicate over many
client connections simultaneously
= E.g., Each time we receive a new request, we fork a child to

handle the request
36

Echo Server: Identifying the Client

m The server can determine the domain name, IP address,
and port of the client

struct hostent *hp; /* pointer to DNS host entry */
char *haddrp; /* pointer to dotted decimal string */
unsigned short client port;
hp = Gethostbyaddr ((const char *)&clientaddr.sin addr.s_addr,
sizeof (clientaddr.sin addr.s_addr), AF INET) ;

haddrp = inet ntoa(clientaddr.sin addr);

client port = ntohs(clientaddr.sin port);

printf ("server connected to %s (%s), port %u\n",
hp->h name, haddrp, client port);

37

Carnegie Mellon

Echo Server: echo

m The server uses RIO to read and echo text lines until EOF
(end-of-file) is encountered.
® EOF notification caused by client calling close (client£fd)

void echo(int connfd)
{
size t n;
char buf [MAXLINE] ;
rio t rio;

Rio readinitb(&rio, connfd);

while((n = Rio_readlineb(&rio, buf, MAXLINE)) !'= 0) {
upper_ case (buf) ;
Rio writen(connfd, buf, n);
printf ("server received %d bytes\n", n);

38

Carnegie Mellon

Testing Servers Using telnet

m The telnet program is invaluable for testing servers
that transmit ASCII strings over Internet connections
® Qursimple echo server
= Web servers
= Mail servers

m Usage:

" unix> telnet <host> <portnumber>

" Creates a connection with a server running on <host>and
listening on port <portnumber>

39

Testing the Echo Server With telnet

greatwhite> echoserver 15213

linux> telnet greatwhite.ics.cs.cmu.edu 15213
Trying 128.2.220.10...

Connected to greatwhite.ics.cs.cmu.edu.
Escape character is '*]'.

hi there

HI THERE

40

Carnegie Mellon

For More Information

m W. Richard Stevens, “Unix Network Programming:
Networking APIs: Sockets and XTI”, Volume 1, Second
Edition, Prentice Hall, 1998

" THE network programming bible

m Unix Man Pages
" Good for detailed information about specific functions

m Complete versions of the echo client and server are
developed in the text
= Updated versions linked to course website
= Feel free to use this code in your assignments

4

