Carnegie Mellon

Exceptional Control Flow:
Exceptions and Processes

15-213 / 18-213: Introduction to Computer Systems
13th Lecture, Oct. 8, 2013

Instructors:
Randy Bryant, Dave O’Hallaron, and Greg Kesden

Carnegie Mellon

Today

m The Process Abstraction
m Exceptional Control Flow
m Process Details

Carnegie Mellon

Processes

m Definition: A process is an instance of a running
program.

" One of the most profound ideas in computer science
" Not the same as “program” or “processor” Memory
m Process provides each program with two key Stack
abstractions:
= Logical control flow CPU
= Each program seems to have exclusive use of the
CPU Registers

= Private copy of program state

= Register values (PC, stack pointer, general registers,
condition codes)

= Private virtual address space
— Program has exclusive access to main memory
— Including stack

Carnegie Mellon

Multiprocessing: The lllusion

Memory | Memory Memory
Stack Stack Stack
CPU CPU CPU

Registers Registers Registers

m Computer runs many processes simultaneously
= Applications for one or more users
= Web browsers, email clients, editors, ...
= Background tasks
= Monitoring network & 1/0 devices

Carnegie Mellon

Multiprocessing Example

X Xxterm

Processes: 123 total, 5 running, 9 stuck, 109 sleeping, 611 threads 11:47:07 |
Load Avg: 1,03, 1,13, 1,14 CPU usage: 3,272 user, 5,15% sys, 91,562 idle
SharedLibs: 576K resident, OB data, OB linkedit,

MemRegions: 27958 total, 1127M resident, 35M private, 494N shared,

PhysMem: 1039M wired, 1974M active, 1062M inactive, 4076M used, 18M free,

YM: 280G vsize, 1091M framework vsize, 23075213(1) pageins, 5843367(0) pageouts,
Metworks: packets: 41046228/11GC in, B6083096/770G out, '

Disks: 17874331/349G read, 12847373/534C written,)
PID COMMAND #CPU TIME #TH #l0 #PORT #MREG RPRYT RSHRD RSIZE WYPRVT VSIZE
99217- Microsoft Of 0,0 02:28,34 4 1 202 418 21M 244 21M BBM 763M
33051 usbmuxd 0,0 00:04,10 3 1 47 66 436K 216K 480K BOM 2422M
33006 iTunesHelper 0,0 00:01,23 2 1 % 78 728 3124K 1124K 43M 2429M
84286 bash 0,0 00:00,11 1 0 20 24 224k 732k 484K 17M 2378M
84285 xterm 0,0 00:00,83 1 0 32 73 BhEK 872K B32K 3728K 2382M
55333- Microsoft Ex 0,3 21:58,37 10 3 360 354 16M B5M 46M 114M 1057M
54751 sleep 0,0 00:00,00 1 0 17 20 92k 212K 360K 9632K 2370M
54739 launchdadd 0,0 00:00,00 2 1 33 50 488K 220K 173BK 48M 2403M
94737 top 6.5 00:02,53171 0 30 23 1416K 216K 2124K 17/M 2378M
94713 automountd 0,0 00:00,02 7 1 5% B4 860K 216K 2184K 53M 2413M
54701 ocspd 0,0 00:00,05 4 1 61 54 1268K 2644K 3132K 50M 2426M
54661 Grab 0,6 00:02,75 6 3 222+ 383+ 15M+ 2BM+ 40M+ YOM+ 2556M+
54653 cookied 0,0 00:00,15 2 1 40 B1 3316K 224K 4088K 42M 2411M
G212 mduarkanr A ANent B7 A 1 &2 a1 FROOK TA19K ARM ASM 24320M

m Running program “top” on Mac
= System has 123 processes, 5 of which are active
= |dentified by Process ID (PID)

Carnegie Mellon

Multiprocessing: The (Traditional) Reality

Memory
Stack Stack Stack
CPU
Reqisters Saved Saved
g Registers Registers

m Single Processor Executes Multiple Processes
Concurrently
" Process executions interleaved (multitasking)
= Address spaces managed by virtual memory system
= we’ll talk about this in a couple of weeks
= Register values for nonexecuting processes saved in memory

Carnegie Mellon

Multiprocessing: The (New) Reality

Memory
Stack Stack Stack
CPU CPU
Registers | | | Registers et

m Multicore processors
= Multiple CPUs on single chip
= Share main memory (and some of the caches)
= Each can execute a separate process
= Scheduling of processors onto cores done by OS

Carnegie Mellon

Multithreading: The lllusion

Memory
Stack Stack LI Stack
CPU CPU CPU
Registers Registers e Registers

m Single process runs multiple threads concurrently

m Each has own control flow and runtime state
= But view memory as shared among all threads
" One thread can read/write the state of another

m We will talk about this later in the term

= For today, just consider one thread / process executing on single core

Carnegie Mellon

Today

m The Process Abstraction
m Exceptional Control Flow
m Process Details

Carnegie Mellon

Control Flow

m Processors do only one thing:

" From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

= This sequence is the CPU’s control flow (or flow of control)

Physical control flow

<startup>
inst;
. inst
Time .2
inst;
inst,
<shutdown>

10

Carnegie Mellon

Altering the Control Flow

m Up to now: two mechanisms for changing control flow:
" Jumps and branches
= Call and return
Both react to changes in program state

m Insufficient for a useful system:
Difficult to react to changes in system state
= data arrives from a disk or a network adapter
" instruction divides by zero
= user hits Ctrl-C at the keyboard
= System timer expires

m System needs mechanisms for “exceptional control flow”

1"

Carnegie Mellon

Exceptional Control Flow

m Exists at all levels of a computer system
m Low level mechanisms

" Exceptions

= change in control flow in response to a system event
(i.e., change in system state)

" Combination of hardware and OS software

m Higher level mechanisms
= Process context switch
= Signals
= Nonlocal jumps: setjmp()/longjmp()
" Implemented by either:
= OS software (context switch and signals)
= Clanguage runtime library (nonlocal jumps)

12

Carnegie Mellon

Exceptions

m An exception is a transfer of control to the OS in response to
some event (i.e., change in processor state)

User Process 0S

]

event — |_current? exception ,
|_next exception processing
by exception handler

[

* return to |_current
*return to |_next
*abort

m Examples:
div by 0, arithmetic overflow, page fault, I/O request completes, Ctrl-C

13

Carnegie Mellon

Exception Tables

Exception
numbers
ot o m Each type of event has a
exception handler 0 unique exception number k
Exception code for
vTable exception handler 1 m k=index into exception table
(1) :// e (a.k.a. interrupt vector)
— code for
2 exception handler 2
m Handler k is called each time
n-1 o exception k occurs
code for

exception handler n-1

14

Carnegie Mellon

Asynchronous Exceptions (Interrupts)

m Caused by events external to the processor
" |ndicated by setting the processor’s interrupt pin
= Handler returns to “next” instruction

m Examples:

= |/O interrupts
= hitting Ctrl-C at the keyboard
= arrival of a packet from a network
= arrival of data from a disk

" Hard reset interrupt
= hitting the power button

= Soft reset interrupt
= hitting Ctrl-Alt-Delete on a PC

15

Carnegie Mellon

Synchronous Exceptions

m Caused by events that occur as a result of executing an
instruction:

" Traps
= |[ntentional
= Examples: system calls, breakpoint traps, special instructions
= Returns control to “next” instruction

" Faults
= Unintentional but possibly recoverable

= Examples: page faults (recoverable), protection faults
(unrecoverable), floating point exceptions

= Either re-executes faulting (“current”) instruction or aborts
= Aborts

= unintentional and unrecoverable

= Examples: parity error, machine check

= Aborts current program
16

Carnegie Mellon

Trap Example: Opening File

m Usercalls: open (filename, options)
m Function open executes system call instruction int

0804d070 < libc open>:

804d082: cd 80 int $0x80

804d084: 5b pop %ebx
User Process 0S
int ¥ exception ‘

pop - .
returns

A 4

m OS must find or create file, get it ready for reading or writing

m Returns integer file descriptor
17

Carnegie Mellon

Fault Example: Page Fault

int a[1000];
m User writes to memory location Tain ()
m That portion (page) of user’s memory a[500] = 13;
is currently on disk }
80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10
User Process 0S

] exception: page fault

movl >
Create page and
TG load into memory

v

m Page handler must load page into physical memory
m Returns to faulting instruction

m Successful on second try
18

Carnegie Mellon

Fault Example: Invalid Memory Reference

int a[1000];
main ()

{
a[5000] = 13;

}

80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User Process

l exception: page fault

oS

movl

»

y

detect invalid address

m Page handler detects invalid address

> signal process

m Sends SIGSEGV signal to user process

m User process exits with “segmentation fault”

19

Carnegie Mellon

Exception Table IA32 (Excerpt)

Exception Number Description Exception Class

0 Divide error Fault

13 General protection fault Fault

14 Page fault Fault

18 Machine check Abort

32-127 OS-defined Interrupt or trap
128 (0x80) System call Trap

129-255 OS-defined Interrupt or trap

Check Table 6-1:
http://download.intel.com/design/processor/manuals/253665.pdf

20

Carnegie Mellon

Today

m The Process Abstraction
m Exceptional Control Flow
m Process Details

21

Carnegie Mellon

Concurrent Processes

m Two processes run concurrently (are concurrent) if their
flows overlap in time

m Otherwise, they are sequential

m Examples (running on single core):
" Concurrent: A&B,A&C
= Sequential: B& C

Process A Process B Process C

Time

22

Carnegie Mellon

User View of Concurrent Processes

m Control flows for concurrent processes are physically
disjoint in time

m However, we can think of concurrent processes as
running in parallel with each other

Process A Process B Process C

Time

23

Context Switching

m Processes are managed by a shared chunk of OS code
called the kernel

" |mportant: the kernel is not a separate process, but rather runs as part
of some user process

m Control flow passes from one process to another via a

context switch
I
Process A 1 Process B

I

I

: user code

I

kernel code } context switch

Time user code

kernel code } context switch

user code

24

fork: Creating New Processes

m int fork (void)

Carnegie Mellon

= creates a new process (child process) that is identical to the calling

process (parent process)
= (Appears to) create complete new copy of program state

® Child & parent then execute as independent processes

= Writes by one don’t affect reads by other
= But ... share any open files

Before Call

Memory

Stack

CPU

Registers

Parent Child
Memory | Memory
Stack Stack
CPU CPU
Registers Registers

25

Carnegie Mellon

fork: Details

m int fork (void)

= creates a new process (child process) that is identical to the calling

process (parent process)
= returns O to the child process

returns child’s pid (process id) to the parent process

pid t pid = fork();
if (pid == 0) {

printf ("hello from child\n");
} else {

printf ("hello from parent\n") ;

}

m Fork is interesting (and often confusing) because
it is called once but returns twice

26

Carnegie Mellon

Understanding fork

Process n Child Process m
» pid t pid = fork(); » pid _t pid = fork();
if (pid == 0) { if (pid == 0) {
printf ("hello from child\n") ; printf ("hello from child\n") ;
} else { } else {
printf ("hello from parent\n"); printf ("hello from parent\n") ;
} }
pid t pid = fork(); pid t pid = fork();
» if (pid == 0) { » if (pid == 0) {
pid=m printf ("hello from child\n"); pid=0 printf ("hello from child\n");
} else { } else {
printf ("hello from parent\n"); printf ("hello from parent\n");
} }
pid t pid = fork(); pid t pid = fork();
if (pid == 0) { if (pid == 0) {
printf ("hello from child\n") ; » printf ("hello from child\n") ;
} else { } else {
» printf ("hello from parent\n") ; printf ("hello from parent\n") ;

} }

hello from parent Which one is first? hello from child
27

Carnegie Mellon

Fork Example #1

m Parent and child both run same code
= Distinguish parent from child by return value from fork
m Start with same state, but each has private copy

" |Including shared output file descriptor
= Relative ordering of their print statements undefined

void forkl ()
{
int x = 1;
pid t pid = fork();
if (pid == 0) {
printf ("Child has x = %d\n", ++x);
} else {
printf ("Parent has x = %d\n", --x);
}

printf ("Bye from process %d with x = %d\n", getpid(), x);

28

Carnegie Mellon

Fork Example #2

m Two consecutive forks

void fork2 ()
{

printf ("LO\n") ; _Bye
fork () ; Ll Bye
printf ("L1\n") ; Bye
fork () ; £

L0 |11 | Bye

printf ("Bye\n") ;

29

Fork Example #3

m Three consecutive forks

{

void fork3()

printf ("LO\n") ;
fork () ;
printf ("L1\n") ;
fork () ;
printf ("L2\n") ;
fork () ;
printf ("Bye\n") ;

L0

L2

Carnegie Mellon

L1l | L2

L2

L1l | L2

w
®

30

Carnegie Mellon

Fork Example #4

m Nested forks in parent

void fork4 ()

{
printf ("LO\n") ;
if (fork() '= 0) {
printf ("L1\n") ; p Bye
if (fork() '= 0) {
printf ("L2\n") ; Bye
fork () ; Bve
\ } 10 |11 |12 | Bye

printf ("Bye\n") ;

3

Carnegie Mellon

Fork Example #5

m Nested forks in children

void fork5 ()

{
printf ("LO\n") ;

if (fork() == 0) {
printf ("L1\n") ; —xe
if (fork() == 0) { L2 | Bye
printf ("L2\n") ; |
fork () ; “Ll Bye
} LO | Bye

}
printf ("Bye\n") ;

32

Carnegie Mellon

exit: Ending a process

m void exit(int status)
= exits a process
= Normally return with status O
= atexit () registers functions to be executed upon exit

void cleanup (void) {
printf ("cleaning up\n");

}

void fork6 () {
atexit (cleanup) ;
fork () ;
exit(0) ;

33

Zombies

m ldea
" When process terminates, still consumes system resources

= Various tables maintained by OS
= Called a “zombie”
= Living corpse, half alive and half dead

m Reaping
= Performed by parent on terminated child (using wait or waitpid)
= Parent is given exit status information

= Kernel discards process

m What if parent doesn’t reap?

" |f any parent terminates without reaping a child, then child will be
reaped by init process (pid ==1)
= So, only need explicit reaping in long-running processes

= e.g., shells and servers

34

Zombie
Example

linux> ./forks 7 &

[1] 6639

Running Parent, PID = 6

Terminating Child,

linux> ps
PID TTY
6585 ttyp9 00:
6639 ttyp9 00:
6640 ttyp9 00:
6641 ttyp9 00:
linux> kill 6639

[1] Terminated
linux> ps
PID TTY

6585 ttyp9 00:
6642 ttyp9 00:

PID

TIME
00:00
00:03
00:00
00:00

TIME
00:00
00:00

Carnegie Mellon

{

void fork7()

if (fork() == 0) {
/* Child */
printf ("Terminating Child, PID = %d\n",
getpid());
exit (0);
} else {
printf ("Running Parent, PID = %d\n",
getpid());
while (1)
639 ; /* Infinite loop */
= 6640 }
}
CMD
tcsh _
forks ps shows child process as

forks <defunct>
pPs

CMD
tcsh

PsS

“defunct”

Killing parent allows child to be
reaped by init

35

Carnegie Mellon

void fork8 ()

e [{
Nonterminating if (fork() == 0) {
/* Child */
Child Example printf ("Running Child, PID = %d\n",
getpid());
while (1)
; /* Infinite loop */
} else {
printf ("Terminating Parent, PID = %d\n",
getpid()) ;
exit (0) ;
}
}
linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676 m Child process still active even though
linux> ps parent has terminated
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6676 ttyp9 00:00:06 forks m Must kill explicitly, or else will keep

6677 ttyp9 00:00:00 ps
linux> kill 6676
linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tecsh
6678 ttyp9 00:00:00 ps

running indefinitely

36

Carnegie Mellon

wait: Synchronizing with Children

m Parent reaps child by calling the wait function

m int wait(int *child status)
= suspends current process until one of its children terminates
= return value is the pid of the child process that terminated

" ifchild status != NULL, then the object it points to will be set
to a status indicating why the child process terminated

37

Carnegie Mellon

wait: Synchronizing with Children

void fork9 () {
int child status;

if (fork() == 0) {
} printf ("HC: hello from child\n") ; HC Bye
else {
printf ("HP: hello from parent\n"); HP CT Bye

wait (&child status);
printf ("CT: child has terminated\n");

}
printf ("Bye\n") ;
exit()

38

Carnegie Mellon

wait () Example

m If multiple children completed, will take in arbitrary order

m Can use macros WIFEXITED and WEXITSTATUS to get information about
exit status

void forklO ()
{
pid t pid[N];
int i;
int child status;
for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0)
exit (100+i); /* Child */
for (i = 0; 1 < N; i++) {
pid t wpid = wait(&child status);
if (WIFEXITED(child;status))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));
else

printf ("Child %d terminate abnormally\n", wpid);

39

Carnegie Mellon

waitpid () : Waiting for a Specific Process

m waltpid(pid, &status, options)
" suspends current process until specific process terminates
= various options (see textbook)

void forkll ()
{
pid t pid[N];
int i;
int child status;
for (1 = 0; i < N; i++)
if ((pid[i] = fork()) == 0)
exit (100+i); /* Child */
for (i = N-1; i >= 0; i--) {
pid t wpid = waitpid(pid[i], &child status, 0);
if (WIFEXITED (child status))
printf ("Child %d terminated with exit status %d\n"
wpid, WEXITSTATUS (child status));
else
printf ("Child %d terminated abnormally\n", wpid);

40

Carnegie Mellon

execve: Loading and Running Programs

m int execve (
char *filename,
char *argv][],
char *envp|[]

)
m Loads and runs in current process:
= Executable filename
= With argument list argv
= And environment variable list envp

m Does not return (unless error)
m Overwrites code, data, and stack
= keeps pid, open files and signal context

m Environment variables:
" “name=value” strings

" getenv and putenv

Null-terminated
env var strings

Null-terminated
cmd line arg strings

unused

envp[n] == NULL

envp[n-1]

envp[0]

argv(argc] == NULL

argvlargc-1]

argv|[0]

Linker vars

envp

argv

argc

Stack frame for
main

Stack bottom

environ

Stack top M

Carnegie Mellon

execve Example

if ((pid = Fork()) == 0) { /* Child runs user job */
if (execve(argv[0], argv, environ) < 0) {
printf ("%s: Command not found.\n", argv[0]);

exit (0) ;
}
}
argv[argc] = NULL
argv(argc-1] —> “/usr/include”
" —> “-1t”
argv|[0] —> “1s”
argv >
envp[n] = NULL
envp[n-1] —> “PWD=/usr/droh”
—> “PRINTER=iron”
envp[O] —> “USER=droh”

environ > "

Carnegie Mellon

Summary

m Exceptions
= Events that require nonstandard control flow

= Generated externally (interrupts) or internally (traps and faults)

m Processes

= At any given time, system has multiple active processes
= Only one can execute at a time on a single core, though

= Each process appears to have total control of
processor + private memory space

43

Carnegie Mellon

Summary (cont.)

m Spawning processes
" Call fork
® One call, two returns

m Process completion
" Callexit
® One call, no return

m Reaping and waiting for processes
" Callwait orwaitpid

m Loading and running programs

" Call execve (or variant)

= One call, (normally) no return

44

