Carnegie Mellon

Cache Memories

15-213: Introduction to Computer Systems
11t Lecture, Oct. 1, 2013

Instructors:
Randy Bryant, Dave O’Hallaron, and Greg Kesden

Carnegie Mellon

Today

m Cache memory organization and operation

Carnegie Mellon

Memory Hierarchies

m Some fundamental and enduring properties of hardware
and software:

= Fast storage technologies cost more per byte, have less capacity,
and require more power (heat!).

" The gap between CPU and main memory speed is widening.
= Well-written programs tend to exhibit good locality.

m These fundamental properties complement each other
beautifully.

m They suggest an approach for organizing memory and
storage systems known as a memory hierarchy.

Carnegie Mellon

An Example Memory Hierarchy

A
LO: . i
. CPU registers hold words retrieved
Registers\ ' from L1 cache
L1: L1 cache
Smaller, (SRAM) :c-,-loicLhzecZ::,des cache lines retrieved
faster,
i L2:
costLler L2 cache
per byte (SRAM) L2 cache holds cache lines
retrieved from main memory
L3:
Main memory
Larger, DRAM Main memory holds disk blocks
slower ()
’ retrieved from local disks
cheaper
per byte L4: Local secondary storage Local disks hold files

(local disks) retrieved from disks on
remote network servers

Remote secondary storage

L5: (tapes, distributed file systems, Web servers)

Carnegie Mellon

General Cache Concept

Smaller, faster, more expensive
memory caches a subset of

the blocks

Cache 4 9 10 3

Data is copied in block-sized

10 transfer units
Larger, slower, cheaper memory
Memory 1 2 3 viewed as partitioned into “blocks”
4 5 6 7
8 9 10 11
12 13 14 15
0 0000000000000 O0CO0CO

Many types of caches

m Examples
= Hardware: L1, L2, L3 cache memories, TLBs, ...

= Software: Virtual memory, FS buffers, Web browser caches, ...

m Hardware cache memories
= Significant impact on program performance

= Topic of today’s lecture

Carnegie Mellon

Cache Memories

m Cache memories are small, fast SRAM-based memories
managed automatically in hardware

= Hold frequently accessed blocks of main memory
m CPU looks first for data in cache, then in main memory
m Typical system structure:

Cache <—> Y
memory (ALU

Systembus Memory bus

o LT Man
bridge memory

Carnegie Mellon

General Cache Organization (S, E, B)

E = 2¢ lines per set
A

- ~
s -
o000
o000
S=Zssets< ceoe
0 0000000 0000COCEOGFEOGOEOEOEOEOEOEOOOOOOSOO
o000
\
Cache size:
v tag olil2] - B1 C =S x E x B data bytes
valid bit N~

B = 2 bytes per cache block (the data)

Carnegie Mellon

* Locate set
CaChe Read * Check if any line in set
has matching tag
E = 2¢ lines per set * Yes + line valid: hit
- A ~ * Locate data starting
r at offset
o000

Address of word:
t bits s bits | b bits

S=Zssets< e e

eeee tag set block
index offset

data begins at this offset

' tag 0|1]|2] - B-1

valid bit S~ ~— —
B = 2° bytes per cache block (the data)

Carnegie Mellon

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

4 . olil21:1als1el7 Address of int:
Y 28 tbits | 0..01 | 100

v tag 0]112)13|4]|5]|6]7

find set

S$=2 sets<

v tag 0]112)13|4]|5]|6]7

'} tag 0|l1]2)13]4|5]|16]7

10

Carnegie Mellon

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

Address of int:
t bits 0..01 | 100

valid? + match: assume yes = hit

v tag 0|j1]2]|3|4]|5]|6]|7

block offset

1"

Carnegie Mellon

Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

Address of int:
t bits 0..01 | 100

valid? + match: assume yes = hit

v tag 0|1]2]|3|4]|5]|6]|7

block offset

int (4 Bytes) is here

If tag doesn’t match: old line is evicted and replaced

12

Carnegie Mellon

Direct-Mapped Cache Simulation

t=1 s=2 b=l M=16 bytes (4-bit addresses), B=2 bytes/block,
X XX X S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit
7 [0111,], miss
8 [1000,], miss
0 [0000,] miss
v Tag Block

Set0 | 1 0 M[0-1]

Set 1l

Set 2

Set3 | 1 0 M[6-7]

13

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

v| | tag | lof1]2{3]als]6l7]| |[v] [tag] [0]2]2]3]4]5]6]7

v] [tag | [o]1]2[3]a]5]6]7 v] [tag] [o]1]2]3]a]5]6]7]| — find set

v| | tag | lof1]2{3]afs]6l7]| |[v] [tag] [0]2]2]3]4]5]6]7

v| | tag | [of1]2{3]afs]6l7]| |[v] [tag] [0]2]2]3]4]5]6]7

14

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes = hit

v| [tag | |o]1]2[3]al5]6|7]| [|v] [tag | [o]2[2]3]a]5]6]7]|] —

block offset

15

Carnegie Mellon

E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes = hit

v| |_tag | [ol1]2[3]a]5]6|7]| [|v] [tag | [o]2[2]3]a]5]6]7]] —

block offset

short int (2 Bytes) is here

No match:
* One line in set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...

16

Carnegie Mellon

2-Way Set Associative Cache Simulation

t=2 s=1 b=1
XX X X M=16 byte addresses, B=2 bytes/block,

S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit
7 [0111,], miss
8 [1000,], miss
0 [0000,] hit

v Tag Block

seto |1 00 | Mm[0-1]
1 |10 [M[89]

[HEY

Set 1 01 M[6-7]

17

What about writes?

m Multiple copies of data exist:
= |1, L2, L3, Main Memory, Disk
m What to do on a write-hit?

= Write-through (write immediately to memory)
= Write-back (defer write to memory until replacement of line)
= Need a dirty bit (line different from memory or not)

m What to do on a write-miss?
= Write-allocate (load into cache, update line in cache)
= Good if more writes to the location follow
= No-write-allocate (writes straight to memory, does not load into cache)
m Typical

= Write-through + No-write-allocate
= Write-back + Write-allocate

18

Carnegie Mellon

Intel Core i7 Cache Hierarchy

Access: 30-40 cycles

L3 unified cache
(shared by all cores)

Block size: 64 bytes for
all caches.

Processor package

. Core 0 Core 3 L1 i-cache and d-cache:
R R 32 KB, 8-way,

: €gs €gs Access: 4 cycles

L1 L1 L1 L1 L2 unified cache:

| d-cache| | i-cache d-cache| | i-cache | 256 KB, 8-way,
" Access: 11 cycles

' | | L2 unified cache L2 unified cache | | ! |3 unified cache:

8 MB, 16-way,

Main memory

19

Carnegie Mellon

Cache Performance Metrics

m Miss Rate
" Fraction of memory references not found in cache (misses / accesses)
=1 — hit rate
= Typical numbers (in percentages):
= 3-10% for L1
= can be quite small (e.g., < 1%) for L2, depending on size, etc.

m Hit Time
" Time to deliver a line in the cache to the processor
= includes time to determine whether the line is in the cache
= Typical numbers:
= 1-2 clock cycle for L1
= 5-20 clock cycles for L2

m Miss Penalty
= Additional time required because of a miss
= typically 50-200 cycles for main memory (Trend: increasing!)

20

Carnegie Mellon

Lets think about those numbers

m Huge difference between a hit and a miss
= Could be 100x, if just L1 and main memory

m Would you believe 99% hits is twice as good as 97%?

= Consider:
cache hit time of 1 cycle
miss penalty of 100 cycles

= Average access time:
97% hits: 1 cycle + 0.03 * 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 * 100 cycles = 2 cycles

m This is why “miss rate” is used instead of “hit rate”

21

Carnegie Mellon

Writing Cache Friendly Code

m Make the common case go fast
® Focus on the inner loops of the core functions

m Minimize the misses in the inner loops
= Repeated references to variables are good (temporal locality)
= Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories

22

Carnegie Mellon

Today

m Performance impact of caches

" The memory mountain

23

Carnegie Mellon

The Memory Mountain

m Read throughput (read bandwidth)

= Number of bytes read from memory per second (MB/s)

m Memory mountain: Measured read throughput as a
function of spatial and temporal locality.

= Compact way to characterize memory system performance.

24

Carnegie Mellon

Memory Mountain Test Function

/* The test function */

void test(int elems, int stride) {
int i, result = 0;
volatile int sink;

for (1 = 0; i < elems; i += stride)
result += data[i];
sink = result; /* So compiler doesn't optimize away the loop */

}

/* Run test(elems, stride) and return read throughput (MB/s) */
double run(int size, int stride, double Mhz)
{

double cycles;

int elems = size / sizeof (int) ;

test (elems, stride) ; /* warm up the cache */
cycles = fcyc2(test, elems, stride, 0); /* call test(elems,stride) */
return (size / stride) / (cycles / Mhz); /* convert cycles to MB/s */

25

Carnegie Mellon

Intel Core i7
H 32 KB L1 i-cache
The Memory Mountain S Ko L1 e
256 KB unified L2 cache
8M unified L3 cache
7000

6000 All caches on-chip

5000

4000

3000

Read throughput (MB/s)

2000

1000

26

The Memory Mountain

Read throughput (MB/s)

Carnegie Mellon

Intel Core i7

32 KB L1 i-cache

32 KB L1 d-cache
8M unified L3 cache

All caches on-chip

256 KB unified L2 cache

27

Carnegie Mellon

Intel Core i7

H 32 KB L1 i-cache
The Memory Mountain S Ko L1 e
256 KB unified L2 cache

— e — 8M unified L3 cache
0 7000 - T
a :
< 6000 All caches on-chip
é_ 4
> 5000
=
o
< 4000
o : Ridges of
é 3000 T | % temporal

2000 X L) locality
Slopes of L] L3
spatial
locality . \

0 X
V) ™ Mem v
"G~ ¥ ©
n O 0o v
= o = o
. »w — w0 o~ = v <
Stride (x8 bytes) ? o c Working set size (bytes)

=
<
©

28

Carnegie Mellon

Today

= Rearranging loops to improve spatial locality

29

Carnegie Mellon

Miss Rate Analysis for Matrix Multiply

m Assume:
" Line size = 32B (big enough for four 64-bit words)
= Matrix dimension (N) is very large
= Approximate 1/N as 0.0
= Cache is not even big enough to hold multiple rows

m Analysis Method:
" Look at access pattern of inner loop

: :\i x\k

30

Matrix Multiplication Example

Variable sum

= Description: /* ik */ held in register
= Multiply N x N matrices for (i=0; i<n; i++) {
= O(NB3) total operations for (J=0; J<n; Jj++) {
sum = 0.0; <

" N reads per source
element

for (k=0; k<n; k++)
sum += a[i][k] * b[k]l[j];
c[i][]J] = sum;

" N values summed per
destination

= but may be able to
hold in register

3

Carnegie Mellon

Layout of C Arrays in Memory (review)

m Carrays allocated in row-major order
= each row in contiguous memory locations
m Stepping through columns in one row:
" for (1 = 0; 1 < N; 1i++)
sum += a[0][1i];
= accesses successive elements
= if block size (B) > 4 bytes, exploit spatial locality
= miss rate =4 bytes /B
m Stepping through rows in one column:
" for (i1 = 0; 1 < n; 1i++)
sum += a[1][0];
= accesses distant elements
" no spatial locality!
= miss rate =1 (i.e. 100%)

32

Carnegie Mellon

Matrix Multiplication (ijk)

/* ijk */
for (i=0; i<n; i++) {

for (j=0; j<n; j++) { -
sum = 0.0; g (i %) (Iij)
A B

Inner loop:

for (k=0; k<n; k++)
sum += a[i] [k] * b[k]l[3j];

c[i] [§] = sum; ‘ ‘ ‘
}

Row-wise Column- Fixed
wise

Misses per inner loop iteration:
A B C

0.25 1.0 0.0

33

Carnegie Mellon

Matrix Multiplication (jik)

/* jik */
for (j=0; j<n; Jj++) {

for (i=0; i<n; i++) { *

sum = 0.0; L;;;J _ E]ii: (ﬁn
for (k=0; k<n; k++) (i,%)

sum += a[i] [k] * b[k][3]; A B

c[i][3] = sum ‘ ‘ ‘
)

Row-wise Column- Fixed
wise

Inner loop:

Misses per inner loop iteration:

A B C

0.25 1.0 0.0

34

Carnegie Mellon

Matrix Multiplication (kij)

/* kij */
for (k=0; k<n; k++) {

for (i=0; i<n; i++) { (i,k) E(k'*)g
r = a[i] [k]; E (i,%)
B C

for (j=0; j<n; jJj++) A
c[i][j] += r * b[k][]]’ ‘ ‘ ‘

Inner loop:

Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B C

0.0 0.25 0.25

35

Carnegie Mellon

Matrix Multiplication (ikj)

/* ik]j */
for (i=0; i<n; i++) {

for (k=0; k<n; k++) { (i,k) E(k’*)g
r = a[i] [k]; 0 (i,%)
B C

for (j=0; j<n; Jj++) A
c[i][J] += r * Db[k][]]: ‘ ‘ ‘

Inner loop:

Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B C

0.0 0.25 0.25

36

Matrix Multiplication (jki)

/* ki */ Inner loop:
for (j=0; j<n; j++) { (*,k)
for (k=0; k<n; k++) { (k.j)
r = b[k][3]; ” .
for (i=0; i<n; 1i++) A B
c[i] [J] += al[il[k] * r; ‘ ‘
Column- Fixed
wise

Misses per inner loop iteration:

A B C

1.0 0.0 1.0

Carnegie Mellon

),

N

C

|

Column-
wise

37

Carnegie Mellon

Matrix Multiplication (kji

/* kji */
for (k=0; k<n; k++) {

for (3=0; j<n; j++) { * k) *]
r = b[k][j]; (I:,J')

for (i=0; i<n; i++)

Inner loop:

c[il [j]1 += al[il[k] * r; A‘\ T c‘
Column- Fixed Column-
wise wise

Misses per inner loop iteration:
A B C

1.0 0.0 1.0

38

for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i][k] * b[k]I[j];
c[i] [J] = sum;
}
}

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i] [k];
for (j=0; j<n; j++)
c[i]l[3] += r * b[k][]J];
}
}

for (j=0; j<n; j++) {

for (k=0; k<n; k++) {
r = b[k][]3]~
for (i=0; i<n; i++)
c[i]l[3] += al[il[k] * r;

Summary of Matrix Multiplication

ijk (& jik):
¢ 2 |loads, O stores
e misses/iter = 1.25

kij (& ikj):
e 2 |loads, 1 store
e misses/iter = 0.5

jki (& kji):
e 2 |loads, 1 store
e misses/iter = 2.0

39

Carnegie Mellon

Core i7 Matrix Multiply Performance

60

jki / kji
__— PR

40
> jki
ki
><ijk
30 / _e_lek
et g e —+Kkij
ijk / jik Ak
A iK]|
20 ’

- M ij / ik

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750
Array size (n) 4

Cycles per inner loop iteration

Carnegie Mellon

Today

= Using blocking to improve temporal locality

4

Carnegie Mellon

Example: Matrix Multiplication

¢ = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; 1 < n; i++)
for (j = 0; j < n; j++)
for (k = 0; k < n; k++)
c[i*n+j] += a[i*n + k]*b[k*n + j];

[T

I
*

42

Carnegie Mellon

Cache Miss Analysis

m Assume:

= Matrix elements are doubles
= Cache block = 8 doubles
" Cache size C << n (much smaller than n)

m First iteration: r ~N

" n/8+n=9n/8 misses

1
*

= Afterwards in cache:
(schematic) . —

Il
*

8 wide
43

Carnegie Mellon

Cache Miss Analysis

m Assume:
= Matrix elements are doubles
= Cache block = 8 doubles
" Cache size C << n (much smaller than n)

n
m Second iteration: —
= Again: :
n/8 + n =9n/8 misses _ *
8 wide

m Total misses:
" 9n/8 * n2=(9/8) * n3

44

Carnegie Mellon

Blocked Matrix Multiplication

¢ = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; 1 < n; i+=B)
for (j = 0; j < n; j+=B)
for (k = 0; k < n; k+=B)
/* B x B mini matrix multiplications */
for (i1l = i; il < i+B; i++)
for (j1 = j; jl < j+B; j++)
for (k1 = k; k1l < k+B; k++)
c[il*n+jl1l] += a[il*n + k1l]*b[kl*n + jl];

i1
Cc a b Cc
= * +
] i1 [

Block size Bx B

45

Carnegie Mellon

Cache Miss Analysis

m Assume:
= Cache block = 8 doubles
= Cache size C << n (much smaller than n)
= Three blocks M fit into cache: 3B>< C

. . . n/B blocks
m First (block) iteration: A
= B2/8 misses for each block M BEEEE B
" 2n/B * BY/8 = nB/4 _ —
(omitting matrix c) - *]
= Afterwards in cache [] EEEEE Block size B x B

(schematic)

I
*

46

Carnegie Mellon

Cache Miss Analysis

m Assume:
= Cache block = 8 doubles
= Cache size C << n (much smaller than n)
= Three blocks M fit into cache: 3B>< C

. . n/B blocks
m Second (block) iteration: A
" Same as first iteration] BEEREE
= 2n/B * B2/8 =nB/4
- 3
m Total misses: Block size B x B

" nB/4 * (n/B)? =n3/(4B)

47

Carnegie Mellon

Blocking Summary

m No blocking: (9/8) * n3
m Blocking: 1/(4B) * n3

m Suggest largest possible block size B, but limit 3B2 < C!

m Reason for dramatic difference:
= Matrix multiplication has inherent temporal locality:
= |nput data: 3n?, computation 2n3
= Every array elements used O(n) times!
= But program has to be written properly

48

Carnegie Mellon

Cache Summary

m Cache memories can have significant performance impact

m You can write your programs to exploit this!

49

