Carnegie Mellon

Machine-Level Programming |: Basics

15-213/18-213: Introduction to Computer Systems
5t Lecture, Sep. 10, 2013

Instructors:
Randy Bryant, Dave O’Hallaron, and Greg Kesden

Carnegie Mellon

Today: Machine Programming |: Basics

History of Intel processors and architectures

Assembly Basics: Registers, operands, move

[l
m C, assembly, machine code
[|
m Intro to x86-64

Carnegie Mellon

Intel x86 Processors

m Totally dominate laptop/desktop/server market

m Evolutionary design
= Backwards compatible up until 8086, introduced in 1978
= Added more features as time goes on

m Complex instruction set computer (CISC)
= Many different instructions with many different formats
= But, only small subset encountered with Linux programs

" Hard to match performance of Reduced Instruction Set Computers
(RISC)

= But, Intel has done just that!
= In terms of speed. Less so for low power.

Carnegie Mellon

Intel x86 Evolution: Milestones

Name Date Transistors MHz

= 8086 1978 29K 5-10
" First 16-bit Intel processor. Basis for IBM PC & DOS
= 1MB address space

m 386 1985 275K 16-33

= First 32 bit Intel processor, referred to as IA32
= Added “flat addressing”, capable of running Unix

m Pentium 4F 2004 125M 2800-3800
" First 64-bit Intel processor, referred to as x86-64

m Core 2 2006 291M 1060-3500
® First multi-core Intel processor

m Corei?7 2008 731M 1700-3900

® Four cores (our shark machines)

Carnegie Mellon

Intel x86 Processors, cont.
m Machine Evolution

Integrated:Memory Controller~:3:Ch DDR3:

= 386 1985 0.3M

" Pentium 1993 3.1M

" Pentium/MMX 1997 4.5M Core 0 Core 1 Core2 Core3
= PentiumPro 1995 6.5M

" Pentium Il 1999 8.2M o

= Pentium4 2001 42M (o] |

= Core 2 Duo 2006 291M L Shared L3 Cache

= Corei’/ 2008 731M

m Added Features
® |nstructions to support multimedia operations
" |nstructions to enable more efficient conditional operations
® Transition from 32 bits to 64 bits
" More cores

2013 State of the Art

= Corei7 Haswell 2013 1.4B

. Processor . [I L8R P [RR freeen[FR | MmOty

.‘E,Gl'aphiCSi e P = || Controlleg|’

m:

including
Display;
DMl and
Misc: 1/0

m Features:
= 4 cores Max 4.0 GHz Clock 84 Watts

Carnegie Mellon

x86 Clones: Advanced Micro Devices (AMD)

m Historically
= AMD has followed just behind Intel
= A little bit slower, a lot cheaper

m Then

= Recruited top circuit designers from Digital Equipment Corp. and
other downward trending companies

= Built Opteron: tough competitor to Pentium 4
= Developed x86-64, their own extension to 64 bits

Carnegie Mellon

Intel’s 64-Bit History
m Intel Attempted Radical Shift from IA32 to I1A64

= Totally different architecture (Itanium)
= Executes IA32 code only as legacy
= Performance disappointing

m AMD Stepped in with Evolutionary Solution
= x86-64 (now called “AMD64”)

m Intel Felt Obligated to Focus on |IA64
" Hard to admit mistake or that AMD is better

m 2004: Intel Announces EM64T extension to I1A32

= Extended Memory 64-bit Technology
= Almost identical to x86-64!

m All but low-end x86 processors support x86-64
= But, lots of code still runs in 32-bit mode

Carnegie Mellon

Our Coverage

m |A32
= The traditional x86
" shark> gcc —m32 hello.c

m x86-64
" The emerging standard
" shark> gcc hello.c
" shark> gcc —m64 hello.c

m Presentation
= Book presents IA32 in Sections 3.1—3.12
" Covers x86-64 in 3.13

= We will cover both simultaneously
= Some labs will be based on x86-64, others on 1A32

Carnegie Mellon

Today: Machine Programming |: Basics

History of Intel processors and architectures

Assembly Basics: Registers, operands, move

[|
m C, assembly, machine code
[|
m Intro to x86-64

10

Definitions

m Architecture: (also ISA: instruction set architecture) The
parts of a processor design that one needs to understand
to write assembly code.

= Examples: instruction set specification, registers.

m Microarchitecture: Implementation of the architecture.

= Examples: cache sizes and core frequency.

m Example ISAs (Intel): IA32, x86-64

1"

Assembly Programmer’s View

CPU Memor
Addresses S y
Registers
& Data Code
PC < > Data
Condition Instructions Stack
Codes <

Programmer-Visible State

= PC: Program counter " Memory
= Address of next instruction " Byte addressable array
= Called “EIP” (IA32) or “RIP” (x86-64) = Code and user data

= Register file = Stack to support procedures

= Heavily used program data

= Condition codes

= Store status information about most
recent arithmetic or logical operation

= Used for conditional branching 12

Turning C into Object Code

" Codeinfiles pl.c p2.c

= Compile with command: gcc -01 pl.c p2.c -0 p
= Use basic optimizations (-01)
= Put resulting binary in file p

text C program (pl.c p2.c)

Compiler (gcc -S)

A 4

text Asm program (pl.s p2.s)

Assembler (gcc or as)

binary Object program (pl.o p2.0) Static libraries
(.a)

Linker (gcc or 1d)

A 4

binary Executable program (p)

13

Carnegie Mellon

Compiling Into Assembly

C Code (p1.c) Generated IA32 Assembly
int sum(int x, int y) sum:
{ pushl %ebp
int t = x+y; movl %esp, 3ebp
return t; movl 12 (%ebp) ,Seax
} addl 8 (%ebp) , 3eax
popl %ebp
ret

Obtain (on shark machine) with command
gce -01 -m32 -S pl.c
Produces filepl.s

Warning: Will get very different results on non-Shark
machines (Andrew Linux, Mac 0S-X, ...) due to different
versions of gcc and different compiler settings.

14

Carnegie Mellon

Assembly Characteristics: Data Types

m “Integer” data of 1, 2, or 4 bytes
= Data values
= Addresses (untyped pointers)

m Floating point data of 4, 8, or 10 bytes

m No aggregate types such as arrays or structures
= Just contiguously allocated bytes in memory

15

Assembly Characteristics: Operations

m Perform arithmetic function on register or memory data

m Transfer data between memory and register
" Load data from memory into register
= Store register data into memory

m Transfer control
" Unconditional jumps to/from procedures
= Conditional branches

16

Object Code

Code for sum
m Assembler

0x08483f4 <sum>: " Translates . s into .o

0x55
0x89 = Binary encoding of each instruction
Oxe> = Nearly-complete image of executable code
0x8b . : -
0245 = Missing linkages between code in different
0x0c files
0x03 m Linker
0x45 .
= Resolves references between files
0x08 | Total of 11 bytes
0x5d y = Combines with static run-time libraries

Oxc3 e Each instruction

1,2, or 3 bytes = E.g., code formalloc, printf

i . . , .
e Starts at address Some libraries are dynamically linked

0x401040 = Linking occurs when program begins
execution

17

Carnegie Mellon

Machine Instruction Example
m C Code

= Add two signed integers

int t = x+y;

m Assembly

= Add 2 4-byte integers
= “Long” words in GCC parlance

addl 8 (%ebp) , %eax

Similar to expression: = Same instruction whether signed
X 4= y or unsigned

More precisely: " Operands:

int eax; x: Register %eax

int *ebp; y: Memory M[%ebp+8]
eax += ebp[2] t: Register %eax

—Return function value in $eax

0x80483fa: 03 45 08 m Object Code
= 3-byte instruction
® Stored at address 0x80483fa

18

Disassembling Object Code

Disassembled

080483f4 <sum>:

80483f4: 55 push %ebp

80483f5: 89 e5 mov %esp, %sebp
80483f7: 8b 45 Oc mov Oxc (%ebp) , seax
80483fa: 03 45 08 add 0x8 (%ebp) , $eax
80483fd: 5d pop %ebp

80483fe: c3 ret

m Disassembler
objdump -d p
= Useful tool for examining object code
= Analyzes bit pattern of series of instructions
" Produces approximate rendition of assembly code
® Can be run on either a.out (complete executable) or . o file

19

Carnegie Mellon

Alternate Disassembly

- Disassembled
Object
0x080483f4: :
0x55 Dump of assembler code for function sum:
0x89 0x080483f4 <sum+0>: push sebp
Oxe5 0x080483f5 <sum+1>: mov sesp, sebp
0x8b 0x080483f7 <sum+3>: mov Oxc (%ebp) , $eax
0x45 0x080483fa <sum+6>: add 0x8 (%ebp) , 3eax
0x0c 0x080483fd <sum+9>: pop %ebp
0x03 0x080483fe <sum+10>: ret
0x45
0x08
0x5d m Within gdb Debugger
Oxc3
*e gdb p

disassemble sum
= Disassemble procedure
x/11xb sum

= Examine the 11 bytes starting at sum

20

Carnegie Mellon

What Can be Disassembled?

% objdump -d WINWORD .EXE
WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:

30001000: 55 push %ebp
30001001: 8b ec mov %esp, $ebp
30001003: 6a ff push SOXffffffff

30001005: 68 90 10 00 30 push $0x30001090
3000100a: 68 91 dc 4c 30 push $0x304cdc9l

m Anything that can be interpreted as executable code
m Disassembler examines bytes and reconstructs assembly source

21

Carnegie Mellon

Today: Machine Programming |: Basics

History of Intel processors and architectures

Assembly Basics: Registers, operands, move

[l
m C, assembly, machine code
[|
m Intro to x86-64

22

Carnegie Mellon

Integer Registers (1A32) Origin

(mostly obsolete)

—
$eax gax $ah gal accumulate
o $ecx $cx %$ch ¢cl counter
(72}
o]
= o d ed sdh edl data
g- Oe x o QX () o)
— =
S $eb %b bh °*bl base
g Oe x o DX () o)
(J)
0 Qesi 2si source
° ° index
. . destination
_ sedi $di dests
) o stack
€SP °Sb pointer
base
3 %b
oebp P pointer
\)
Y

16-bit virtual registers

(backwards compatibility) 2

Moving Data: IA32 Seax

m Moving Data secx
mov1l Source, Dest: Sedx

o
m Operand Types sebx
" Immediate: Constant integer data sesi
= Example: $0x400, $-533 2edi

= Like C constant, but prefixed with *$” o
- sesp

= Encoded with 1, 2, or 4 bytes

sebp

= Register: One of 8 integer registers
= Example: $eax, %edx
= But $esp and $ebp reserved for special use
= Others have special uses for particular instructions

= Memory: 4 consecutive bytes of memory at address given by register
= Simplest example: ($eax)
= Various other “address modes”

24

Carnegie Mellon

movl Operand Combinations

Source Dest Src,Dest C Analog
4 Reg movl $0x4,%eax temp = 0x4;
Imm
Mem movl $-147, (%eax) *p = -147;
movl < Reg Reg movl %eax,%edx temp2 = templ;
Mem movl %$eax, (%edx) *p = temp;

\ Mem Reg movl (%eax) , %edx temp = *p;

Cannot do memory-memory transfer with a single instruction

25

Carnegie Mellon

Simple Memory Addressing Modes

m Normal (R) Mem[Reg[R]]
= Register R specifies memory address
= Aha! Pointer dereferencing in C

movl (%ecx) ,%eax

m Displacement D(R) Mem[Reg[R]+D]
= Register R specifies start of memory region
" Constant displacement D specifies offset

movl 8 (%ebp) , Sedx

26

Example of Simple Addressing Modes

swap:
pushl %ebp A
void swap (int *xp, int *yp) movl %esp,%ebp . Set
{ int £0 = *xp; pushl %ebx J Up
int tl1 = *yp;)
*xp = t1; movl 8 (%ebp), %edx
*yp = tO0; movl 12 (%ebp), %eax
} movl Sedx), %ecx > Body
movl %Seax), %ebx
movl $%$ebx, (%edx)
movl %ecx, (%eax) J

popl %ebx

popl %ebp Finish
ret

27

Using Simple Addressing Modes

swap:

pushl %ebp
void swap (int *xp, int *yp) movl %esp,%ebp Set
t int t0 = *xp; pushl %ebx Up
int tl1 = *yp;)
*xp = t1; movl 8 (%ebp), %edx
*yp = t0; movl 12 (%ebp), %eax
} movl Sedx), %ecx > Body
movl %Seax), %ebx
movl $%$ebx, (%edx)
movl %ecx, (%eax) J

popl %ebx

popl Sebp Finish
ret

28

Understanding Swap

{

int t0 = *xp;
int t1 = *yp;

void swap (int *xp, int *yp)

*xp = t1;
*yp = t0;
}

Register Value

sedx Xp

Feax VP

$ecx t0 movl

. movl

$ebx tl movl
movl
movl
movl

[)
C Stack
Offset ° (in memory)
12 yp
8 Xp
4 | Rtnadr
0 |Old %ebp—— %ebp
-4 |0ld %ebx[—— %esp
8 (%ebp) , %$edx # edx = xp
12 (%ebp), %eax # eax = yp
%$edx) , %ecx # ecx = *xp (t0)
%eax), %ebx # ebx = *yp (tl)
%$ebx, (%edx) # *xp = tl
%ecx, (%eax) # *yp = t0

29

Carnegie Mellon

Address
Understanding Swap 123 | ox124
456 0x120
Oxllc
%eax 0x118
tedx Offset 0x114
Secx YP 12 [0x120 | ox110
8 |0x124
%ebx xP gt 0x10c
4 | Rtn adr 0x108
sesi 0
%ebp — 0x104
$edi -4
0x100
sesp
%ebp| 0x104
movl 8 (%ebp), %edx # edx = xp
movl 12 (%ebp), %eax # eax = yp
movl %edx) , %ecx # ecx = *xp (t0)
movl %eax), %ebx # ebx = *yp (tl)
movl %ebx, (%edx) # *xp = tl
movl %ecx, (%eax) # *yp = t0

30

Carnegie Mellon

Address
Understanding Swap 123 | 0x124
456 0x120
Oxllc
%eax 0x118
edx| 0x124 Offset Ox114
Secx YP 12 | 0x120 | ox110
8 | 0x124
%ebx xP gt 0x10c
4 | Rtn adr 0x108
sesi 0
%ebp — 0x104
$edi -4
0x100
sesp
%ebp| 0x104
movl 8 (%ebp), %edx # edx = xp
movl 12 (%ebp), %eax # eax = yp
movl %edx) , %ecx # ecx = *xp (t0)
movl %eax), %ebx # ebx = *yp (tl)
movl %ebx, (%edx) # *xp = tl
movl %ecx, (%eax) # *yp = t0

3

Carnegie Mellon

Address
Understanding Swap 123 | 0x124
456 0x120
Oxllc
Seax| 0x120 0x118
sedx| 0x124 Offset 0x114
Secx YP 12 10x120 | 0x110
8 | 0x124
%ebx *P 2 0x10c
4 | Rtn adr 0x108
sesi 0
%ebp — 0x104
$edi -4
0x100
sesp
%ebp| 0x104
movl 8 (%ebp), %edx # edx = xp
movl 12 (%ebp), %eax # eax = yp
movl %edx) , %ecx # ecx = *xp (t0)
movl %eax), %ebx # ebx = *yp (tl)
movl %ebx, (%edx) # *xp = tl
movl %ecx, (%eax) # *yp = t0

32

Carnegie Mellon

Address
Understanding Swap 123 | 0x124
456 0x120
Oxllc
%$eax| 0x120 0x118
sedx| 0x124 Offset 0x114
Secx 123 12 [0x120 | ox110
8 |0x124
%ebx *P gt 0x10c
4 | Rtn adr 0x108
sesi 0
%ebp — 0x104
$edi -4
0x100
sesp
%ebp| 0x104
movl 8 (%ebp), %edx # edx = xp
movl 12 (%ebp), %eax # eax = yp
movl %edx) , %ecx # ecx = *xp (tO0)
movl %eax), %ebx # ebx = *yp (tl)
movl %ebx, (%edx) # *xp = tl
movl %ecx, (%eax) # *yp = t0

33

Carnegie Mellon

Address
Understanding Swap 123 | 0x124
456 0x120
Oxllc
%$eax| 0x120 0x118
sedx| 0x124 Offset 0x114
Secx 123 12 [0x120 | ox110
3ebx 456 8 [0x124 | ox10c
4 | Rtn adr 0x108
sesi 0
%ebp — 0x104
$edi -4
0x100
sesp
%ebp| 0x104
movl 8 (%ebp), %edx # edx = xp
movl 12 (%ebp), %eax # eax = yp
movl %edx) , %ecx # ecx = *xp (t0)
movl %eax), %ebx # ebx = *yp (tl)
movl %ebx, (%edx) # *xp = tl
movl %ecx, (%eax) # *yp = t0

34

Carnegie Mellon

Address
Understanding Swap 456 | 0x124
456 0x120
Oxllc
%$eax| 0x120 0x118
sedx| 0x124 Offset 0x114
Secx 123 12 [0x120 | ox110
Sebx 456 8 [0x124 | ox1o0c
4 | Rtn adr 0x108
sesi 0
%ebp — 0x104
$edi -4
0x100
sesp
%ebp| 0x104
movl 8 (%ebp), %edx # edx = xp
movl 12 (%ebp), %eax # eax = yp
movl %edx) , %ecx # ecx = *xp (t0)
movl %eax), %ebx # ebx = *yp (tl)
movl %ebx, (%edx) # *xp = tl
movl %ecx, (%eax) # *yp = t0

35

Carnegie Mellon

Address
Understanding Swap 456 | 0x124
123 0x120
Oxllc
%$eax| 0x120 0x118
sedx| 0x124 Offset 0x114
Secx 123 12 [0x120 | ox110
Sebx 456 8 [0x124 | ox1o0c
4 | Rtn adr 0x108
sesi 0
%ebp — 0x104
$edi -4
0x100
sesp
%ebp| 0x104
movl 8 (%ebp), %edx # edx = xp
movl 12 (%ebp), %eax # eax = yp
movl %edx) , %ecx # ecx = *xp (t0)
movl %eax), %ebx # ebx = *yp (tl)
movl %ebx, (%edx) # *xp = tl
movl %ecx, (%eax) # *yp = t0

36

Carnegie Mellon

Complete Memory Addressing Modes

m Most General Form
D(Rb,Rij,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]
= D: Constant “displacement” 1, 2, or 4 bytes
= Rb: Base register: Any of 8 integer registers
= Ri: Index register: Any, except for $esp
= Unlikely you’d use $ebp, either
=S Scale: 1, 2, 4, or 8 (why these numbers?)

m Special Cases

(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]
D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]

37

Carnegie Mellon

Today: Machine Programming |: Basics

History of Intel processors and architectures

Assembly Basics: Registers, operands, move

O
m C, assembly, machine code
[|
m Intro to x86-64

38

Carnegie Mellon

Data Representations: IA32 + x86-64

m Sizes of C Objects (in Bytes)

C Data Type Generic 32-bit Intel IA32 x86-64
= unsigned 4 4 4
= int 4 4 4
= longint 4 4 8
= char 1 1 1
= short 2 2 2
= float 4 4 4
= double 8 8 8
= long double 8 10/12 10/16
= char * 4 4 8

39

Carnegie Mellon

x86-64 Integer Registers

srax %eax
$rbx $ebx
$rcex $ecx
Frdx %edx
$rsi $esi
$rdi $edi
Irsp sesp
srbp %ebp

Sr8 $r8d

$r9 %r9d

2r10 %r10d
Srll $rlld
$rl2 $rl2d
°r13 sr13d
$rld $rldd
%rlH $rls5d

= Extend existing registers. Add 8 new ones.

= Make $ebp/%rbp general purpose

40

Carnegie Mellon

Instructions

m Long word 1 (4 Bytes) €2 Quad word g (8 Bytes)

m New instructions:
" movl=>movqg
" addl=>addg
" sall=>salqg

" etc.

m 32-bit instructions that generate 32-bit results

= Set higher order bits of destination register to 0@
= Example: addl

4

32-bit code for swap

{

int
int
*xp
*yp

void swap (int *xp, int *yp)

swap:
pushl 3%ebp
movl Sesp, sebp

pushl %ebx

movl 8 (%ebp), %edx
movl 12 (%ebp), %eax
movl Sedx), %ecx
movl %Seax), %ebx
movl $%$ebx, (%edx)
movl $%ecx, (%eax)
popl 3ebx

popl 3ebp

ret

. Set

> Body

Finish

42

Carnegie Mellon

64-bit code for swap

swap:
: : : Set
void swap (int *xp, int *yp)
{ Up
int t0 = *xp. movl %rdi) ’ $eax N
int tl1 = *yp:; movl %rsi), %Sedx
* — P o ’9 . > BOdV
xp = tl1; movl sedx, (%rdi)
*yp = tO0; movl %eax, (%rsi)
}

J
ret } Finish
m Operands passed in registers (why useful?)

® First (xp) in $rdi, second (yp) in $rsi

" 64-bit pointers
m No stack operations required
m 32-bit data

= Data held in registers $edx and $eax

" movl operation "

Carnegie Mellon

64-bit code for long int swap

swap 1:
: Set
void swap (long *xp, long *yp) Up
{ :
long t0 = *xp; movq (%rdi) , %$rax O
long tl = *yp; movq %rsi), %rdx . Bod
*xp = tl1; movq $rdx, (%rdi) ody
*yp = t0; movqg srax, (%rsi)
}
ret } Finish
m 64-bit data

= Data held in registers $rdx and $rax
" movg operation

o7

= “gq” stands for quad-word

44

Carnegie Mellon

Machine Programming I: Summary

m History of Intel processors and architectures
= Evolutionary design leads to many quirks and artifacts
m C, assembly, machine code

= Compiler must transform statements, expressions, procedures into
low-level instruction sequences

m Assembly Basics: Registers, operands, move

" The x86 move instructions cover wide range of data movement
forms

m Intro to x86-64

= A major departure from the style of code seen in I1A32

45

