Floating Point

15-213: Introduction to Computer Systems 4th Lecture, Sep 5, 2013

Instructors:

Randy Bryant, Dave O'Hallaron, and Greg Kesden

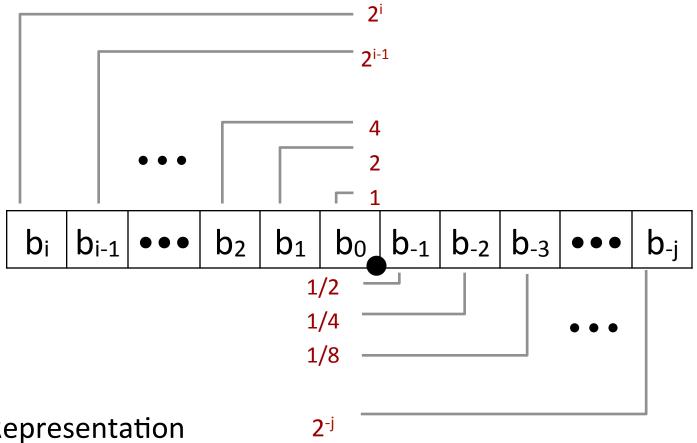
Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Fractional binary numbers

■ What is 1011.101₂?

Fractional Binary Numbers



- Representation
 - Bits to right of "binary point" represent fractional powers of 2
 - Represents rational number:

$$\sum_{k=-i}^{i} b_k \times 2^k$$

Fractional Binary Numbers: Examples

Value
Representation

5 3/4 101.11₂

2 7/8 10.111₂

1 7/16 1.01112

Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.111111...₂ are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$
 - Use notation 1.0 ε

Representable Numbers

- Limitation #1
 - Can only exactly represent numbers of the form x/2^k
 - Other rational numbers have repeating bit representations
 - Value Representation

 - 1/5 0.001100110011[0011]...₂
 - **1/10** 0.0001100110011[0011]...2
- Limitation #2
 - Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? very large?)

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

IEEE Floating Point

- IEEE Standard 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs
- Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

Numerical Form:

$$(-1)^{s} M 2^{E}$$

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two
- Encoding
 - MSB S is sign bit s
 - exp field encodes E (but is not equal to E)
 - frac field encodes M (but is not equal to M)

S	ехр	frac
---	-----	------

Precision options

■ Single precision: 32 bits

S	exp	frac
1	8-bits	23-bits

■ Double precision: 64 bits

S	ехр	frac
1	11-bits	52-bits

Extended precision: 80 bits (Intel only)

S	exp	frac
1	15-bits	63 or 64-bits

"Normalized" Values

- When: $\exp \neq 000...0$ and $\exp \neq 111...1$
- Exponent coded as a biased value: E = Exp Bias
 - Exp: unsigned value exp
 - Bias = 2^{k-1} 1, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: M = 1.xxx...x2
 - xxx...x: bits of frac
 - Minimum when frac=000...0 (M = 1.0)
 - Maximum when frac=111...1 (M = 2.0ε)
 - Get extra leading bit for "free"

Normalized Encoding Example

```
■ Value: Float F = 15213.0;

■ 15213<sub>10</sub> = 11101101101101<sub>2</sub>

= 1.1101101101101<sub>2</sub> x 2<sup>13</sup>
```

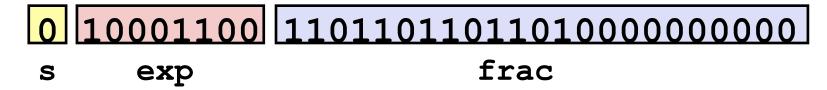
Significand

```
M = 1.101101101_2
frac= 101101101101_000000000_2
```

Exponent

```
E = 13
Bias = 127
Exp = 140 = 10001100_{2}
```

Result:



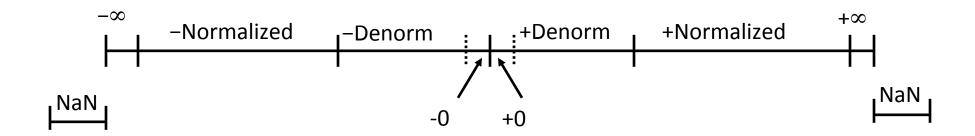
Denormalized Values

- Condition: exp = 000...0
- Exponent value: E = -Bias + 1 (instead of E = 0 Bias)
- Significand coded with implied leading 0: M = 0.xxx...x₂
 - xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
 - $\exp = 000...0$, $frac \neq 000...0$
 - Numbers closest to 0.0
 - Equispaced

Special Values

- **■** Condition: exp = 111...1
- Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Case: exp = 111...1, frac ≠ 000...0
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty \times 0$

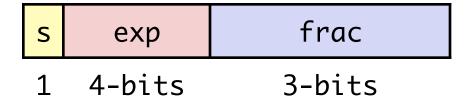
Visualization: Floating Point Encodings



Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Tiny Floating Point Example



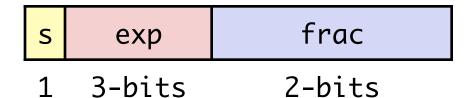
- 8-bit Floating Point Representation
 - the sign bit is in the most significant bit
 - the next four bits are the exponent, with a bias of 7
 - the last three bits are the frac
- Same general form as IEEE Format
 - normalized, denormalized
 - representation of 0, NaN, infinity

Dynamic Range (Positive Only)

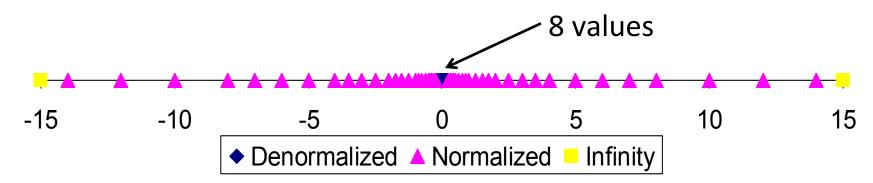
	s exp	frac	E	Value
	0 0000	000	-6	0
	0 0000	001	-6	1/8*1/64 = 1/512 closest to zero
Denormalized	0 0000	010	-6	2/8*1/64 = 2/512
numbers	•••			
	0 0000	110	-6	6/8*1/64 = 6/512
	0 0000	111	-6	7/8*1/64 = 7/512 largest denorm
	0 0001	000	-6	8/8*1/64 = 8/512 smallest norm
	0 0001	001	-6	9/8*1/64 = 9/512
	0 0110	110	-1	14/8*1/2 = 14/16
	0 0110	111	-1	15/8*1/2 = 15/16 closest to 1 below
Normalized	0 0111	000	0	8/8*1 = 1
numbers	0 0111	001	0	9/8*1 = 9/8 closest to 1 above
	0 0111	010	0	10/8*1 = 10/8
	•••			
	0 1110	110	7	14/8*128 = 224
	0 1110	111	7	15/8*128 = 240 largest norm
	0 1111	000	n/a	inf

Distribution of Values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 23-1-1 = 3

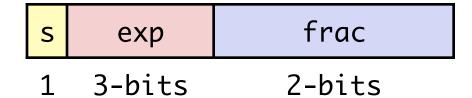


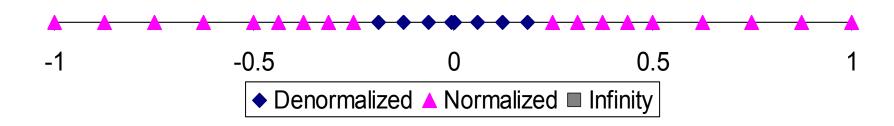
■ Notice how the distribution gets denser toward zero.



Distribution of Values (close-up view)

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 3





Special Properties of the IEEE Encoding

- FP Zero Same as Integer Zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider -0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point Operations: Basic Idea

$$\blacksquare x +_f y = Round(x + y)$$

$$\blacksquare$$
 x \times_f y = Round(x \times y)

■ Basic idea

- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding

■ Rounding Modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Towards zero	\$1	\$1	\$1	\$2	- \$1
Round down (-∞)	\$1	\$1	\$1	\$2	- \$2
Round up (+∞)	\$2	\$2	\$2	\$3	- \$1
Nearest Even (default)	\$1	\$2	\$2	\$2	- \$2

Closer Look at Round-To-Even

- Default Rounding Mode
 - Hard to get any other kind without dropping into assembly
 - All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated
- Applying to Other Decimal Places / Bit Positions
 - When exactly halfway between two possible values
 - Round so that least significant digit is even
 - E.g., round to nearest hundredth

1.2349999	1.23	(Less than half way)
1.2350001	1.24	(Greater than half way)
1.2350000	1.24	(Half way—round up)
1.2450000	1.24	(Half wav—round down)

Rounding Binary Numbers

- Binary Fractional Numbers
 - "Even" when least significant bit is 0
 - "Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.00 <mark>110</mark> 2	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.002	(1/2—up)	3
2 5/8	10.10 <mark>100</mark> 2	10.102	(1/2—down)	2 1/2

FP Multiplication

- \blacksquare (-1)^{s1} M1 2^{E1} x (-1)^{s2} M2 2^{E2}
- Exact Result: (-1)^s M 2^E
 - Sign s: s1 ^ s2
 - Significand M: M1 x M2
 - Exponent E:
 E1 + E2

Fixing

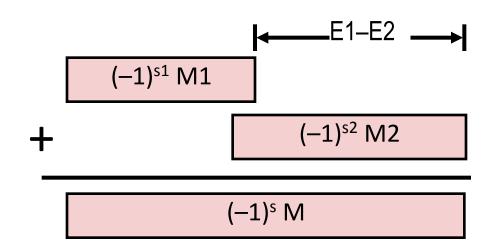
- If M ≥ 2, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision

Implementation

Biggest chore is multiplying significands

Floating Point Addition

- \blacksquare (-1)^{s1} M1 2^{E1} + (-1)^{s2} M2 2^{E2}
 - Assume E1 > E2
- Exact Result: (-1)^s M 2^E
 - Sign s, significand M:
 - Result of signed align & add
 - Exponent E: E1



- Fixing
 - If M ≥ 2, shift M right, increment E
 - ■if M < 1, shift M left k positions, decrement E by k
 - Overflow if E out of range
 - Round M to fit frac precision

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point in C

- C Guarantees Two Levels
 - •float single precision
 - •double double precision
- Conversions/Casting
 - •Casting between int, float, and double changes bit representation
 - double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - int \rightarrow double
 - Exact conversion, as long as int has ≤ 53 bit word size
 - int → float
 - Will round according to rounding mode

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form M x 2^E
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers

Floating Point Puzzles

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither d nor f is NaN

Creating Floating Point Number

Steps

- Normalize to have leading 1
- Round to fit within fraction

S	exp	frac
1	4-bits	3-bits

Postnormalize to deal with effects of rounding

Case Study

Convert 8-bit unsigned numbers to tiny floating point format

Example Numbers

128	10000000
15	00001101
33	00010001
35	00010011
138	10001010
63	00111111

Normalize

S	exp	frac
1	4-bits	3-bits

- Requirement
 - Set binary point so that numbers of form 1.xxxxx
 - Adjust all to have leading one
 - Decrement exponent as shift left

Value	Binary	Fraction	Exponent
128	10000000	1.0000000	7
15	00001101	1.1010000	3
17	00010001	1.0001000	4
19	00010011	1.0011000	4
138	10001010	1.0001010	7
63	00111111	1.1111100	5

Rounding

1.BBGRXXX

Guard bit: LSB of result

Sticky bit: OR of remaining bits

Round bit: 1st bit removed

Round up conditions

- Round = 1, Sticky = $1 \rightarrow > 0.5$
- Guard = 1, Round = 1, Sticky = 0 → Round to even

Value	Fraction	GRS	Incr?	Rounded
128	1.0000000	000	N	1.000
15	1.1010000	100	N	1.101
17	1.0001000	010	N	1.000
19	1.0011000	110	Υ	1.010
138	1.0001010	011	Υ	1.001
63	1.1111100	111	Υ	10.000

Postnormalize

- Issue
 - Rounding may have caused overflow
 - Handle by shifting right once & incrementing exponent

Value	Rounded	Exp	Adjusted	Result
128	1.000	7		128
15	1.101	3		15
17	1.000	4		16
19	1.010	4		20
138	1.001	7		134
63	10.000	5	1.000/6	64

More Slides

Interesting Numbers

■ Double $\approx 1.8 \times 10^{308}$

{single, double}

Description	ехр	frac	Numeric Value			
Zero	0000	0000	0.0			
Smallest Pos. Denorm.	0000	0001	$2^{-\{23,52\}} \times 2^{-\{126,1022\}}$			
■ Single $\approx 1.4 \times 10^{-45}$						
■ Double $\approx 4.9 \times 10^{-324}$						
Largest Denormalized	0000	1111	$(1.0 - \varepsilon) \times 2^{-\{126,1022\}}$			
■ Single $\approx 1.18 \times 10^{-38}$						
■ Double $\approx 2.2 \times 10^{-308}$						
Smallest Pos. Normalized	0001	0000	$1.0 \times 2^{-\{126,1022\}}$			
 Just larger than largest denormalized 						
One	0111	0000	1.0			
Largest Normalized	1110	1111	$(2.0 - \varepsilon) \times 2^{\{127,1023\}}$			
Single ≈ 3.4 x 10 ³⁸						

Mathematical Properties of FP Add

- Compare to those of Abelian Group
 - Closed under addition?
 - But may generate infinity or NaN
 - Commutative?
 - Associative?
 - Overflow and inexactness of rounding
 - 0 is additive identity?
 - Every element has additive inverse
 - Except for infinities & NaNs
- Monotonicity
 - $a \ge b \Rightarrow a+c \ge b+c$?
 - Except for infinities & NaNs

Mathematical Properties of FP Mult

- Compare to Commutative Ring
 - Closed under multiplication?
 - But may generate infinity or NaN
 - Multiplication Commutative?
 - Multiplication is Associative?
 - Possibility of overflow, inexactness of rounding
 - 1 is multiplicative identity?
 - Multiplication distributes over addition?
 - Possibility of overflow, inexactness of rounding
- Monotonicity
 - $a \ge b$ & $c \ge 0 \Rightarrow a * c \ge b *c$?
 - Except for infinities & NaNs