
1

Carnegie Mellon

The course that gives CMU its “Zip”!

Course Overview

15-213 (18-213): Introduction to Computer Systems
1st Lecture, Aug. 27, 2013

Instructors:

Randy Bryant, Dave O’Hallaron, and Greg Kesden

2

Carnegie Mellon

Overview

 Course theme

 Five realities

 How the course fits into the CS/ECE curriculum

 Logistics

3

Carnegie Mellon

Course Theme:
Abstraction Is Good But Don’t Forget Reality
 Most CS and CE courses emphasize abstraction

 Abstract data types

 Asymptotic analysis

 These abstractions have limits
 Especially in the presence of bugs

 Need to understand details of underlying implementations

 Useful outcomes from taking 213
 Become more effective programmers

 Able to find and eliminate bugs efficiently

 Able to understand and tune for program performance

 Prepare for later “systems” classes in CS & ECE

 Compilers, Operating Systems, Networks, Computer Architecture,
Embedded Systems, Storage Systems, etc.

4

Carnegie Mellon

Great Reality #1:
Ints are not Integers, Floats are not Reals
 Example 1: Is x2 ≥ 0?

 Float’s: Yes!

 Int’s:

 40000 * 40000  1600000000

 50000 * 50000  ??

 Example 2: Is (x + y) + z = x + (y + z)?
 Unsigned & Signed Int’s: Yes!

 Float’s:

 (1e20 + -1e20) + 3.14 --> 3.14

 1e20 + (-1e20 + 3.14) --> ??
Source: xkcd.com/571

5

Carnegie Mellon

Computer Arithmetic

 Does not generate random values

 Arithmetic operations have important mathematical properties

 Cannot assume all “usual” mathematical properties
 Due to finiteness of representations

 Integer operations satisfy “ring” properties

 Commutativity, associativity, distributivity

 Floating point operations satisfy “ordering” properties

 Monotonicity, values of signs

 Observation

 Need to understand which abstractions apply in which contexts

 Important issues for compiler writers and serious application programmers

6

Carnegie Mellon

Great Reality #2:
You’ve Got to Know Assembly
 Chances are, you’ll never write programs in assembly

 Compilers are much better & more patient than you are

 But: Understanding assembly is key to machine-level execution
model
 Behavior of programs in presence of bugs

 High-level language models break down

 Tuning program performance

 Understand optimizations done / not done by the compiler

 Understanding sources of program inefficiency

 Implementing system software

 Compiler has machine code as target

 Operating systems must manage process state

 Creating / fighting malware

 x86 assembly is the language of choice!

7

Carnegie Mellon

Great Reality #3: Memory Matters
Random Access Memory Is an Unphysical Abstraction

 Memory is not unbounded

 It must be allocated and managed

 Many applications are memory dominated

 Memory referencing bugs especially pernicious

 Effects are distant in both time and space

 Memory performance is not uniform

 Cache and virtual memory effects can greatly affect program performance

 Adapting program to characteristics of memory system can lead to major
speed improvements

8

Carnegie Mellon

Memory Referencing Bug Example
double fun(int i)

{

 volatile double d[1] = {3.14};

 volatile long int a[2];

 a[i] = 1073741824; /* Possibly out of bounds */

 return d[0];

}

fun(0)  3.14

fun(1)  3.14

fun(2)  3.1399998664856

fun(3)  2.00000061035156

fun(4)  3.14, then segmentation fault

 Result is architecture specific

9

Carnegie Mellon

Memory Referencing Bug Example
double fun(int i)

{

 volatile double d[1] = {3.14};

 volatile long int a[2];

 a[i] = 1073741824; /* Possibly out of bounds */

 return d[0];

}

fun(0)  3.14

fun(1)  3.14

fun(2)  3.1399998664856

fun(3)  2.00000061035156

fun(4)  3.14, then segmentation fault

Location accessed by

fun(i)

Explanation: Saved State 4

d7 ... d4 3

d3 ... d0 2

a[1] 1

a[0] 0

10

Carnegie Mellon

Memory Referencing Errors

 C and C++ do not provide any memory protection

 Out of bounds array references

 Invalid pointer values

 Abuses of malloc/free

 Can lead to nasty bugs

 Whether or not bug has any effect depends on system and compiler

 Action at a distance

 Corrupted object logically unrelated to one being accessed

 Effect of bug may be first observed long after it is generated

 How can I deal with this?
 Program in Java, Ruby, Python, ML, …

 Understand what possible interactions may occur

 Use or develop tools to detect referencing errors (e.g. Valgrind)

11

Carnegie Mellon

Great Reality #4: There’s more to
performance than asymptotic complexity

 Constant factors matter too!

 And even exact op count does not predict performance

 Easily see 10:1 performance range depending on how code written

 Must optimize at multiple levels: algorithm, data representations,
procedures, and loops

 Must understand system to optimize performance
 How programs compiled and executed

 How to measure program performance and identify bottlenecks

 How to improve performance without destroying code modularity and
generality

12

Carnegie Mellon

Memory System Performance Example

 Hierarchical memory organization

 Performance depends on access patterns

 Including how step through multi-dimensional array

void copyji(int src[2048][2048],

 int dst[2048][2048])

{

 int i,j;

 for (j = 0; j < 2048; j++)

 for (i = 0; i < 2048; i++)

 dst[i][j] = src[i][j];

}

void copyij(int src[2048][2048],

 int dst[2048][2048])

{

 int i,j;

 for (i = 0; i < 2048; i++)

 for (j = 0; j < 2048; j++)

 dst[i][j] = src[i][j];

}

162ms 5.2ms
2.8 GHz Pentium iCore 7

13

Carnegie Mellon

Great Reality #5:
Computers do more than execute programs

 They need to get data in and out

 I/O system critical to program reliability and performance

 They communicate with each other over networks
 Many system-level issues arise in presence of network

 Concurrent operations by autonomous processes

 Coping with unreliable media

 Cross platform compatibility

 Complex performance issues

14

Carnegie Mellon

Role within CS/ECE Curriculum

CS 410

Operating

Systems

CS 411

Compilers

Processes
Mem. Mgmt

CS 441

Networks

Network
Protocols

ECE 447

Architecture

ECE 349

Embedded

Systems

CS 412

OS Practicum

CS 122

Imperative
 Programming

CS 415

Databases

Data Reps.
Memory Model

ECE 340
Digital

Computation

Machine
Code Arithmetic

ECE 348

Embedded

System Eng.

Foundation of Computer Systems
Underlying principles for hardware,
software, and networking

Execution Model
Memory System

213

ECE 545/549
Capstone

CS 440

Distributed
systems

Network Prog
Concurrency

15

Carnegie Mellon

Course Perspective

 Most Systems Courses are Builder-Centric

 Computer Architecture

 Design pipelined processor in Verilog

 Operating Systems

 Implement large portions of operating system

 Compilers

 Write compiler for simple language

 Networking

 Implement and simulate network protocols

16

Carnegie Mellon

Course Perspective (Cont.)

 Our Course is Programmer-Centric

 Purpose is to show that by knowing more about the underlying system,
one can be more effective as a programmer

 Enable you to

 Write programs that are more reliable and efficient

 Incorporate features that require hooks into OS

– E.g., concurrency, signal handlers

 Cover material in this course that you won’t see elsewhere

 Not just a course for dedicated hackers

 We bring out the hidden hacker in everyone!

17

Carnegie Mellon

Teaching staff

Randy

Bryant

Dave O’Hallaron

Greg Kesden

18

Carnegie Mellon

Textbooks

 Randal E. Bryant and David R. O’Hallaron,

 Computer Systems: A Programmer’s Perspective, Second Edition
(CS:APP2e), Prentice Hall, 2011

 http://csapp.cs.cmu.edu

 This book really matters for the course!

 How to solve labs

 Practice problems typical of exam problems

 Brian Kernighan and Dennis Ritchie,

 The C Programming Language, Second Edition, Prentice Hall, 1988

 Still the best book about C, from the originators

19

Carnegie Mellon

Course Components

 Lectures

 Higher level concepts

 Recitations
 Applied concepts, important tools and skills for labs, clarification of

lectures, exam coverage

 Labs (7)
 The heart of the course

 1-2 weeks each

 Provide in-depth understanding of an aspect of systems

 Programming and measurement

 Exams (midterm + final)

 Test your understanding of concepts & mathematical principles

20

Carnegie Mellon

Getting Help

 Class Web page: http://www.cs.cmu.edu/~213

 Complete schedule of lectures, exams, and assignments

 Copies of lectures, assignments, exams, solutions

 Clarifications to assignments

 Blackboard

 We won’t be using Blackboard for the course

21

Carnegie Mellon

Getting Help
 Staff mailing list: 15-213-staff@cs.cmu.edu

 Use this for all communication with the teaching staff

 Always CC staff mailing list during email exchanges

 Send email to individual instructors only to schedule appointments

 Office hours (starting Tue Sept 3):
 SMTWR, 5:30-7:30pm, WeH 5207

 1:1 Appointments
 You can schedule 1:1 appointments with any of the teaching staff

22

Carnegie Mellon

Policies: Labs And Exams

 Work groups

 You must work alone on all lab assignments

 Handins
 Labs due at 11:59pm on Tues or Thurs

 Electronic handins using Autolab (no exceptions!)

 Exams

 Exams will be online in network-isolated clusters

 Held over multiple days. Self-scheduled; just show up!

 Appealing grades
 In writing to Prof O’Hallaron within 7 days of completion of grading

 Follow formal procedure described in syllabus

23

Carnegie Mellon

Facilities

 Labs will use the Intel Computer Systems Cluster

 The “shark machines”

 linux> ssh shark.ics.cs.cmu.edu

 21 servers donated by Intel for 213

 10 student machines (for student logins)

 1 head node (for Autolab server and instructor logins)

 10 grading machines (for autograding)

 Each server: iCore 7: 8 Nehalem cores, 32 GB DRAM, RHEL 6.1

 Rack mounted in Gates machine room

 Login using your Andrew ID and password

 Getting help with the cluster machines:

 Please direct questions to staff mailing list

24

Carnegie Mellon

Timeliness

 Grace days

 5 grace days for the semester

 Limit of 2 grace days per lab used automatically

 Covers scheduling crunch, out-of-town trips, illnesses, minor setbacks

 Save them until late in the term!

 Lateness penalties
 Once grace day(s) used up, get penalized 15% per day

 No handins later than 3 days after due date

 Catastrophic events

 Major illness, death in family, …

 Formulate a plan (with your academic advisor) to get back on track

 Advice

 Once you start running late, it’s really hard to catch up

25

Carnegie Mellon

Cheating

 What is cheating?

 Sharing code: by copying, retyping, looking at, or supplying a file

 Coaching: helping your friend to write a lab, line by line

 Copying code from previous course or from elsewhere on WWW

 Only allowed to use code we supply, or from CS:APP website

 What is NOT cheating?

 Explaining how to use systems or tools

 Helping others with high-level design issues

 Penalty for cheating:

 Removal from course with failing grade

 Permanent mark on your record

 Detection of cheating:
 Our tools for doing this are much better than most cheaters think!

 Last Fall, 12 students were caught cheating and failed the course.

26

Carnegie Mellon

Other Rules of the Lecture Hall

 Laptops: permitted

 Electronic communications: forbidden

 No email, instant messaging, cell phone calls, etc

 Presence in lectures, recitations: voluntary, recommended

 No recordings of ANY KIND

27

Carnegie Mellon

Policies: Grading

 Exams (50%): midterm (20%), final (30%)

 Labs (50%): weighted according to effort

 Final grades based on a combination of straight scale and
possibly a tiny amount of curving.

28

Carnegie Mellon

Programs and Data

 Topics

 Bits operations, arithmetic, assembly language programs

 Representation of C control and data structures

 Includes aspects of architecture and compilers

 Assignments

 L1 (datalab): Manipulating bits

 L2 (bomblab): Defusing a binary bomb

 L3 (buflab): Hacking a buffer bomb

29

Carnegie Mellon

The Memory Hierarchy

 Topics

 Memory technology, memory hierarchy, caches, disks, locality

 Includes aspects of architecture and OS

 Assignments

 L4 (cachelab): Building a cache simulator and optimizing for locality.

 Learn how to exploit locality in your programs.

30

Carnegie Mellon

Exceptional Control Flow

 Topics

 Hardware exceptions, processes, process control, Unix signals,
nonlocal jumps

 Includes aspects of compilers, OS, and architecture

 Assignments

 L5 (tshlab): Writing your own Unix shell.

 A first introduction to concurrency

31

Carnegie Mellon

 Virtual Memory

 Topics

 Virtual memory, address translation, dynamic storage allocation

 Includes aspects of architecture and OS

 Assignments

 L6 (malloclab): Writing your own malloc package

 Get a real feel for systems-level programming

32

Carnegie Mellon

 Networking, and Concurrency

 Topics

 High level and low-level I/O, network programming

 Internet services, Web servers

 concurrency, concurrent server design, threads

 I/O multiplexing with select

 Includes aspects of networking, OS, and architecture

 Assignments

 L7 (proxylab): Writing your own Web proxy

 Learn network programming and more about concurrency and
synchronization.

33

Carnegie Mellon

Lab Rationale

 Each lab has a well-defined goal such as solving a puzzle or
winning a contest

 Doing the lab should result in new skills and concepts

 We try to use competition in a fun and healthy way

 Set a reasonable threshold for full credit

 Post intermediate results (anonymized) on Autolab scoreboard for glory!

34

Carnegie Mellon

 Autolab (https://autolab.cs.cmu.edu)

 Labs are provided by the CMU Autolab system

 Project page: http://autolab.cs.cmu.edu

 Developed by CMU faculty and students

 Key ideas: Autograding and Scoreboards

 Autograding: Using VMs on-demand to evaluate untrusted code.

 Scoreboards: Real-time, rank-ordered, and anonymous summary.

 Used by 2,500 students each semester, since Fall, 2010

 With Autolab you can use your Web browser to:

 Download the lab materials

 Handin your code for autograding by the Autolab server

 View the class scoreboard

 View the complete history of your code handins, autograded results,
instructor’s evaluations, and gradebook.

 View the TA annotations of your code for Style points.

35

Carnegie Mellon

 Autolab accounts

 Students enrolled 10am on Mon, Aug 26 have Autolab
accounts

 You must be enrolled to get an account

 Autolab is not tied in to the Hub’s rosters

 If you add in, contact 15-213-staff@cs.cmu.edu for an account

 For those who are waiting to add in, the first lab (datalab) will
be available on the Schedule page of the course Web site.

mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu
mailto:15-213-staff@cs.cmu.edu

36

Carnegie Mellon

 Waitlist questions

 15-213: Catherine Fichtner (cathyf@cs.cmu.edu)

 18-213: Jennifer Loughran (jackson1@andrew.cmu.edu)

 Please don’t contact the instructors with waitlist questions.

mailto:cathyf@cs.cmu.edu
mailto:jackson1@andrew.cmu.edu

37

Carnegie Mellon

Welcome
and Enjoy!

