15-213, Fall 2013
Buffer Lab: Understanding Buffer Overflow
Assigned: Tue, Sep 24, Due: Tue, Oct 1, 11:59PM
Last Possible Time to Turnin: Fri, Oct 4, 11:59PM

Introduction

This assignment will help you develop a detailed understanadf 1A-32 calling conventions and stack
organization. It involves applying a seriestifffer overflow attacken an executable filbufbomb in the
lab directory.

Note: In this lab, you will gain firsthand experience with one of thethods commonly used to exploit

security weaknesses in operating systems and networkrse®er purpose is to help you learn about the
runtime operation of programs and to understand the nafutesoform of security weakness so that you
can avoid it when you write system code. We do not condoneghetithis or any other form of attack to

gain unauthorized access to any system resources. Thergraneal statutes governing such activities.

Logistics

e As usual, this is an individual project.

e You must do this lab on one of the class Shark machirasp(//www.cs.cmu.edu/ ~213/
labmachines.html)

e Even though you will be exploiting a program that uses Iat8R-bit calling convention, you will be
running this lab on one of the 64-bit Shark machines. We gdedrthe lab usingcc’s -m32 flag,
so all code produced by the compiler follows IA-32 rules. sTeihould be enough to convince you
that the compiler can use any calling convention it want$psg as it's consistent.

Hand Out Instructions
You can obtain your buffer bomb from the Autolab site

https://autolab.cs.cmu.edu

After logging in to Autolab, seled®uffer Lab -> Download your bomb . The Autolab server will
return atar file calledbuflab-handout.tar to your browser.

Start by copyingbuflab-handout.tar to a (protected) directory in which you plan to do your work.
Then give the commanddr xvf buflab-handout.tar ". (As usual, donot untar the handout on
a machine other than an Andrew Linux machine or Shark maadhihess you know you're using tools
that don’t mangle line endings or file permissions.) Thid eriéate a directory callebuflab-handout
containing the following three executable files:

bufbomb: The program you will attack.
makecookie Generates a “cookie” based on your userid.

hex2raw. A utility to help convert between string formats.

In the following instructions, we will assume that you haepied the three programs to a protected local
directory, and that you are executing them in that localatiiney.

Userids and Cookies

Phases of this lab will require a slightly different solutisom each student. The correct solution will be
based on your Andrew ID.
A cookieis a string of eight hexadecimal digits that is (with high lpability) unique to your userid (i.e.,

Andrew user name). You can generate your cookie witmia&ecookie program giving your user name
as the argument. For example:

unix> ./ makecooki e bovi k
0x1005b2b7

In four of your five buffer attacks, your objective will be toake your cookie show up in places where it

ordinarily would not.

The BUFBOMB Program

The BUFBOMB program reads a string from standard input. It does so wélfuhctiongetbuf defined
below:

1 #define NORMAL BUFFER_SIZE 32
2
3 int getbuf()

4 {

5 char buff[NORMAL_BUFFER_SIZE];
6 Gets(buf);

7 return 1;

8 }

The functionGets is similar to the standard library functiagets —it reads a string from standard input
(terminated by\n ’ or end-of-file) and stores it (along with a null terminatat)the specified destination.
In this code, you can see that the destination is an doudyhaving sufficient space for 32 characters.

Gets (andgets) grabs a string off the input stream and stores it into itgidason address (in this case
buf). However,Gets() has no way of determining whethleaf is large enough to store the whole input.
It simply copies the entire input string, possibly overringnthe bounds of the storage allocated at the
destination.

If the string typed by the user etbuf is ho more than 31 characters long, it is clear gtbuf will
return 1, as shown by the following execution example:

unix> ./ bufbonb -t bovik
Type string: I love 15-213.
Dud: getbuf returned 0x1

Typically an error occurs if we type a longer string:

unix> ./ bufbonb -t bovik
Type string: It is easier to love this class when you are a TA
Ouch!: You caused a segmentation fault!

As the error message indicates, overrunning the buffecéilyi causes the program state to be corrupted,
leading to a memory access error. Your task is to be morercletie the strings you feedurFBoMB so that
it does more interesting things. These are cadbgploitstrings.

BurFBoMB takes several different command line arguments:

-t userid Operate the bomb for the indicated userid. You should alyaygide this argument for several
reasons:

e Itisrequired to log your successful attacks to the Autokatyer.

e BUFBOMB determines the cookie you will be using based on your usasdoes the program
MAKECOOKIE.

e We have built features intBUFBOMB so that some of the key stack addresses you will need to
use depend on your userid’s cookie.

-h : Print list of possible command line arguments

-n : Operate in “Nitro” mode, as is used in Level 4 below.

At this point, you should think about the x86 stack structut®t and figure out what entries of the stack you
will be targeting. You may also want to think abceKxactlywhy the last example created a segmentation
fault, although this is less clear.

Your exploit strings will typically contain byte values thdo not correspond to the ASCII values for printing
characters. The programex2RAW can help you generate thesaw strings. It takes as input hex-
formattedstring. In this format, each byte value is represented byrewodigits. For example, the string
“012345 ” could be entered in hex format a80 31 32 33 34 35 .” (Recall that the ASCII code for
decimal digitx is 0x3 x.)

The hex characters you passx2rRAw should be separated by whitespace (blanks or newlinesgohre
mend separating different parts of your exploit string wigwlines while you're working on itdEX2RAW
also supports C-style block comments, so you can mark ofiosescof your exploit string. For example:

bf 66 7b 32 78 / * mov $0x78327b66,%edi */

Be sure to leave space around both the starting and endingientistrings (/*, */) so they will be properly
ignored.

If you generate a hex-formatted exploit string in the &bgloit.txt , you can apply the raw string to
BUFBOMB in several different ways:

1. You can set up a series of pipes to pass the string thragg2rAw.
unix> cat exploit.txt | ./hex2raw | ./bufbonb -t bovik
2. You can store the raw string in a file and use 1/O redirediosupply it toBUFBOMB:

unix> ./ hex2raw < exploit.txt > exploit-rawtxt
unix> ./ bufbonb -t bovi k < exploit-raw txt

This approach can also be used when runmiungsoms from within GDB:

unix> gdb buf bonb
(gdb) run -t bovik < exploit-rawtxt

Important points:

e Your exploit string must not contain byte val0g0A at any intermediate position, since this is the
ASCII code for newline (n ’). When Gets encounters this byte, it will assume you intended to
terminate the string.

e HEX2RAW expects two-digit hex values separated by a whitespacef Y@ iwant to create a byte
with a hex value of 0, you need to specify 00. To create the WeREADBEER/ou should pass DE
AD BE EF toHEX2RAW.

When you correctly solve one of the levetsjFBoMB will automatically send a notification to the Autolab
server. The server will test your exploit string to make streally works, and it will update the Autolab
scoreboard indicating that your userid (listed by nicknph@s completed this level.

Unlike the Bomb Lab, there is no penalty for making mistakethis lab. Feel free to fire away BUFBOMB
with any string you like. Of course, you shouldn’t brute #tbis lab either, since it would take longer than
you have to do the assignment and probably cause networlepneb

4

Level O: Candle (10 pts)

The functiongetbuf is called withinBuFBOMB by a functiontest having the following C code:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

void test()
{
int val;
volatile int local = uniqueval();
val = getbuf();
[+ Check for corrupted stack */
if (local !'= uniqueval()) {
printf("Sabotaged!: the stack has been corrupted\n™);
}

else if (val == cookie) {
printf("Boom!: getbuf returned 0x%x\n", val);
validate(3);
} else {
printf("Dud: getbuf returned 0x%x\n", val);
}
}

Whengetbuf executes its return statement (line Sgetbuf), the program ordinarily resumes execution
within functiontest (at line 7 of this function). We want to change this behawtithin the filebufbomb ,
there is a functiosmoke having the following C code:

void

{

smoke()

printf("Smoke!: You called smoke()\n");
validate(0);
exit(0);

Your task is to geBUFBOMB to execute the code famoke whengetbuf executes its return statement,
rather than returning ttest . Note that your exploit string may also corrupt parts of ttaek not directly
related to this stage, but this will not cause a problem,essmeoke causes the program to exit directly.

Some Advice

All the information you need to devise your exploit string this level can be determined by exam-
ining a disassembled version®iFBOMB. Useobjdump -d to get this dissembled version.

Be careful about byte ordering.

You might want to useDB to step the program through the last few instructiongetbuf to make
sure it is doing the right thing.

The placement obuf within the stack frame fogetbuf depends on which version afcc was
used to compildufbomb , so you will have to read some assembly to figure out its troation.

Level 1: Sparkler (10 pts)
Within the filebufbomb there is also a functiofizz having the following C code:

void fizz(int val)

{
if (val == cookie) {
printf("Fizz!: You called fizz(0x%x)\n", val);
validate(1);
} else
printf("Misfire: You called fizz(0x%x)\n", val);
exit(0);
}

Similar to Level 0, your task is to g&#UFBOMB to execute the code fdizz rather than returning to
test . In this case, however, you must make it appediizp as if you have passed your cookie as its
argument. How can you do this?

Some Advice

¢ Note that the program won't really cdizz —it will simply execute its code. This has important
implications for where on the stack you want to place youikéao

Level 2: Firecracker (15 pts)

A much more sophisticated form of buffer attack involvespying a string that encodes actual machine
instructions. The exploit string then overwrites the retpointer with the starting address of these instruc-
tions. When the calling function (in this cagetbuf) executes itset instruction, the program will start
executing the instructions on the stack rather than retgriiVith this form of attack, you can get the pro-
gram to do almost anything. The code you place on the stacklexictheexploitcode. This style of attack
is tricky, though, because you must get machine code ontstén and set the return pointer to the start of
this code.

Within the filebufbomb there is a functiobang having the following C code:

int global_value = 0;

void bang(int val)

{
if (global_value == cookie) {
printf("Bang!: You set global_value to Ox%x\n", global_va lue);
validate(2);
} else
printf("Misfire: global_value = 0x%x\n", global_value);
exit(0);
}

Similar to Levels 0 and 1, your task is to geiFBOMB to execute the code fdrang rather than returning
totest . Before this, however, you must set global variaiilebal value to your userid’s cookie. Your
exploit code should seflobal_value , push the address bfang on the stack, and then executeet
instruction to cause a jump to the code bang .

Some Advice

e You can useGDB to get the information you need to construct your exploiingtr Set a break-
point within getbuf and run to this breakpoint. Determine parameters such asadteess of
global_value and the location of the buffer.

e Determining the byte encoding of instruction sequencesdnghs tedious and prone to errors. You
can let tools do all of the work by writing an assembly code ddataining the instructions and data
you want to put on the stack. Assemble this file withc -M32 -c and disassemble it withBJDUMP
-D. You should be able to get the exact byte sequence that yduyyéd at the prompt. (A brief
example of how to do this is included at the end of this writgup

e Keep in mind that your exploit string depends on your machyoar compiler, and even your userid’s
cookie. Do all of your work on a Shark machine, and make suteitydude the proper userid on the
command line tBUFBOMB.

e Watch your use of address modes when writing assembly codee tHatmovl $0x4, %eax
moves thevalue 0x00000004 into register%eax; whereasmovl 0x4, %eax moves the value
at memory locatior0x00000004 into %eax. Since that memory location is usually undefined, the
second instruction will cause a segfault!

e Do not attempt to use eitherjmp or acall instruction to jump to the code fdvang. These
instructions uses PC-relative addressing, which is veckytrto set up correctly. Instead, push an
address on the stack and usetbe instruction.

Level 3: Dynamite (20 pts)

Our preceding attacks have all caused the program to jumbet@ade for some other function, which
then causes the program to exit. As a result, it was acceptahise exploit strings that corrupt the stack,
overwriting saved values.

The most sophisticated form of buffer overflow attack catiseprogram to execute some exploit code that
changes the program'’s register/memory state, but makgsdigeam return to the original calling function
(test in this case). The calling function is oblivious to the altad his style of attack is tricky, though,
since you must: 1) get machine code onto the stack, 2) seethenrpointer to the start of this code, and 3)
undo any corruptions made to the stack state.

Your job for this level is to supply an exploit string that ixdausegetbuf to return your cookie back to
test , rather than the value 1. You can see in the codeadet that this will cause the program to go
“Boom!.” Your exploit code should set your cookie as the return @ahestore any corrupted state, push
the correct return location on the stack, and execut ainstruction to really return ttest

Some Advice

e You can usesDB to get the information you need to construct your exploingtr Set a breakpoint
within getbuf and run to this breakpoint. Determine parameters such asatresl return address.

e Determining the byte encoding of instruction sequencesanghs tedious and prone to errors. You
can let tools do all of the work by writing an assembly codedataining the instructions and data
you want to put on the stack. Assemble this file witbc and disassemble it witbBJDUMP. You
should be able to get the exact byte sequence that you wél &yphe prompt. (A brief example of
how to do this is included at the end of this writeup.)

e Keep in mind that your exploit string depends on your machyoar compiler, and even your userid’s
cookie. Do all of your work on a Shark machine, and make suteitydude the proper userid on the
command line tBUFBOMB.

Once you complete this level, pause to reflect on what you hegemplished. You caused a program to
execute machine code of your own design. You have done saufficiently stealthy way that the program
did not realize that anything was amiss.

Level 4: Nitroglycerin (10 pts)

Please note: You'll need to use the*,” command-line flag in order to run this stage.

From one run to another, especially by different users, Xaetestack positions used by a given procedure
will vary. One reason for this variation is that the valuesalbfenvironment variables are placed near the
base of the stack when a program starts executing. Envinohwagiables are stored as strings, requiring
different amounts of storage depending on their values.sTthe stack space allocated for a given user
depends on the settings of his or her environment varialfi¢ack positions also differ when running a

program undeGDB, SinceGDB uses stack space for some of its own state.

In the code that callgetbuf , we have incorporated features that stabilize the stadkadhe position of
getbuf ’s stack frame will be consistent between runs. This madessible for you to write an exploit
string knowing the exact starting addressaf . If you tried to use such an exploit on a normal program,
you would find that it works some times, but it causes segntientfaults at other times. Hence the name
“dynamite”—an explosive developed by Alfred Nobel that @ons stabilizing elements to make it less
prone to unexpected explosions.

For this level, we have gone the opposite direction, makimgstack positions even less stable than they
normally are. Hence the name “nitroglycerin”—an explogivat is notoriously unstable.

When you rurBuFBOMB with the command line flag-th ,” it will run in “Nitro” mode. Rather than calling
the functiongetbuf , the program calls a slightly different functigretbufn

#define KABOOM_BUFFER_SIZE 512

int getbufn()
{

char buf[KABOOM_BUFFER_SIZE];
Gets(buf);
return 1;

This function is similar tagetbuf , except that it has a buffer of 512 characters. You will ndwasl addi-
tional space to create a reliable exploit. The code thas geflbufn first allocates a random amount of
storage on the stack (using library functialioca) that ranges between 0 and 255 bytes. Thus, if you
were to sample the value &bebp during two successive executions gdtbufn , you would find they
differ by as much ag-127.

In addition, when run in Nitro modeBUFBOMB requires you to supply your string 5 times, and it will
executegetbufn 5 times, each with a different stack offset. Your exploitrgirmust make it return your
cookie each of these times.

Your task is identical to the task for the Dynamite level. ®@again, your job for this level is to supply an
exploit string that will causgetbufn to return your cookie back to test, rather than the value L1 ¢an
see in the code for test that this will cause the program tokg®BOOM! Your exploit code should set
your cookie as the return value, restore any corrupted, gtateh the correct return location on the stack,
and execute get instruction to really return ttestn

Some Advice

e You can use the programex2rRAw to send multiple copies of your exploit string. If you have a
single copy in the fileexploit.txt , then you can use the following command:

unix> cat exploit.txt | ./hex2raw -n | ./bufbonb -n -t bovik

You must use the same string for all 5 executiongetbufn . Otherwise it will fail the testing code
used by our grading server.

e The trick is to make use of theop instruction. It is encoded with a single byte (cd@0). It may
be useful to read about "nop sleds” on page 262 of the textbook

Logistical Notes

Hand in occurs automatically to the Autolab server whengweer correctly solve a level. Upon receiving
your solution, the server will validate your string and uigdidne Autolab scoreboard. You should check this
page after your submission to make sure your string has kaietated. [If you really solved the level, your
string shouldbe valid.]

Note that each level is graded individually. You do not neeedd them in the specified order, but you will
get credit only for the levels for which the server receivesmbd message. You can check the Autolab
scoreboard to see how far you've gotten.

TheBuFBOMB utility usually only callsvalidate once you have successfully completed a phaakdate
forwards your exploit string to the Autolab server, wheiis thecked. If you calWalidate by some other

9

means, it will send a non-working exploit string. Autolaldlicates a non-working exploit string by assign-
ing a score of zero.

Furthermore, Autolab creates the scoreboard using thetlegsults it has for each phase. If you call
validate and end up sending an incorrect exploit string to Autolabyiit mark your solution to that
phase as invalid, even if you solved it correctly at an eatliee. To fix this, send your correct solution
again.

General advice

e You can get an invaluable one-pageB quick reference from the CS:APP2e student site:
http://csapp.cs.cmu.edu/public/students.html

e GDB will complain if you try to single step code on the stack withyout asm” turned on. Instead,
consider using a command suchdésplay/5i $eip to track the execution of the instructions on
the stack as you single-step the program counter.

e A common error when attempting to solve Nitro is to createxgiat that returns to the wrong place
(test vstestn), in such a way that it starts in Nitro but returns in Dynamijteinting “Boom”
instead of “Kaboom”. When you submit such an incorrect ekt grading, Autolab will zero out
any points you might have for Dynamite. To correct this, Yilaeéed to resubmit the correct Dynamite
exploit.

“Hacking” Buflab

For many of these levels it is possible to make your explditrrepast conditional checks in our code. For
example, in Level 2: Firecracker, it is possible to have yeploit return directly to the call to validate and
skip the check ofjlobal_value == cookie . This is not a valid solution to this level, through this
entire lab,returning anywhere except for the very beginning of any fundion is considered an invalid
submission and will receive zero points Autolab will check for this when grading your solution. We
will read your submissions after the deadline and subtraicttg for any invalid submissions not caught by
Autolab.

Generating Byte Codes

UsingGccas an assembler amBJDUMP as a disassembler makes it convenient to generate the lids co
for instruction sequences. For example, suppose we writee @fample.S containing the following
assembly code:

Example of hand-generated assembly code

push $0xabcdef # Push value onto stack

10

add $17,%eax # Add 17 to %eax
.align 4 # Following will be aligned on multiple of 4
long Oxfedcha98 # A 4-byte constant

The code can contain a mixture of instructions and data. Wingtto the right of a#’ character is a
comment.

We can now assemble and disassemble this file:

unix> gcc -nmB2 -c exanple. S
unix> obj dunp -d exanple.o > exanple.d

The generated filexample.d contains the following lines

0: 68 ef cd ab 00 push $0xabcdef

5: 83 c0 11 add $0x11,%eax

8: 98 cwitl Obj dunp tries to

9: ba .byte Oxba interpret these bytes
a: dc fe fdivr %st,%st(6) as instructions

Each line shows a single instruction. The number on theneftates the starting address (starting with 0),
while the hex digits after the ° character indicate the byte codes for the instruction. sTkee can see that
the instructiorpush $0XxABCDEF has hex-formatted byte co@8 ef cd ab 00

Starting at address 8, the disassembler gets confuseigsltdrinterpret the bytes in the fiégxample.o as
instructions, but these bytes actually correspond to dddée, however, that if we read off the 4 bytes start-
ing at address 8 we ge®8 ba dc fe . This is a byte-reversed version of the data wox&EDCBA98
This byte reversal represents the proper way to supply theskas a string, since a little endian machine
lists the least significant byte first.

Finally, we can read off the byte sequence for our code as:

68 ef cd ab 00 83 cO 11 98 ba dc fe

This string can then be passed throufx2RAW to generate a proper input string we can givet&BOMB.
Alternatively, we can edit example.d to look like this:

68 ef cd ab 00 / = push $0xabcdef =/
83 c0 11 / * add $0x11,%eax =/

98

ba dc fe

which is also a valid input we can pass througex2RAW before sending tsUFBOMB.

11

