
Carnegie Mellon

Introduction to Computer Systems
15-213/18-243 Fall 2010
November 15th, 2010

Threading and Thread Safety

Carnegie Mellon

Overview

� News

� Threading

� Basics

� Thread Lifecycle

� Thread Safety� Thread Safety

� Race Conditions

� Synchronization Techniques

� Proxy Lab

Carnegie Mellon

News

� Proxy due Tuesday Nov 23rd at 11:59pm

� DBUG info session: Saturday Nov 20th, 12-
2PM in GHC 4401.

Carnegie Mellon

Threading

Carnegie Mellon

Multi-Threaded process

Thread 1 context:
Data registers
Condition codes
SP-1
PC-1

stack 1

Thread 1

Thread 2 context:
Data registers
Condition codes
SP-2
PC-2

stack 2

Thread 2

Thread N context:
Data registers
Condition codes
SP-N
PC-N

stack N

Thread N

…

shared libraries

run-time heap

0

read-only data

code

Kernel context:
VM structures

Descriptor table

Shared resources:

writable data

Private Address Space

Carnegie Mellon

Posix Threads (Pthreads) Interface

� Standard interface for ~60 functions

� Creating and reaping threads.

� pthread_create

� pthread_join

� Determining your thread ID

� pthread_self� pthread_self

� Terminating threads

� pthread_cancel

� pthread_exit

� Synchronizing access to shared variables

� pthread_mutex_init

� pthread_mutex_[un]lock

� pthread_rwlock_init

� pthread_rwlock_[wr]rdlock

Carnegie Mellon

Multi-threaded Hello World

/* hello.c - Pthreads "hello, world" program */

#include "csapp.h"

void *thread(void *vargp);

int main() {

pthread_t tid;

int i;

Thread attributes

(usually NULL)

Start routine int i;

for(i = 0; i < 42; ++i) {

pthread_create(&tid, NULL, thread, NULL);

pthread_join(tid, NULL);

}

exit(0);

}

/* thread routine */

void *thread(void *vargp) {

printf("Hello, world!\n");

return NULL;

}

Start routine

arguments

return value

Start routine

Carnegie Mellon

Exiting a process and thread

� pthread_exit() only terminates the current
thread, NOT the process

� exit() terminates ALL the threads in the
process, i.e., the process itselfprocess, i.e., the process itself

Carnegie Mellon

Joinable & Detached Threads

� Joinable thread can be reaped and killed by other
threads

� must be reaped (with pthread_join) to free memory

resources.

Detached thread cannot be reaped or killed by other � Detached thread cannot be reaped or killed by other
threads

� resources are automatically reaped on termination.

� Default state is joinable

� use pthread_detach(pthread_self()) to make detached.

Carnegie Mellon

Thread Safety

Carnegie Mellon

Race condition

� A race occurs when the correctness of a program
depends on one thread reaching point x in its control
flow before another thread reaches point y.

� Access to shared variables and data structures

� Threads dependent on a condition

� Use synchronization to avoid race conditions

� Ways to do synchronization
� Semaphores

� Mutex

� Read-write locks

Carnegie Mellon

Synchronization

� Semaphore
� Restricts the number of threads that can access a

shared resource

� Mutex
� Special case of semaphore that restricts access to

one thread

� Read-write locks
� Multiple readers allowed

� Single writer allowed

� No readers allowed when writer is present

Carnegie Mellon

Semaphore

� Classic solution: Dijkstra's P and V operations on
semaphores.

� Semaphore: non-negative integer synchronization
variable.

� P(s): [while (s == 0) wait(); s--;]

� V(s): [s++;]

� OS guarantees that operations between brackets [] are
executed indivisibly.

� Only one P or V operation at a time can modify s.

� Semaphore invariant: (s >= 0)

� Initialize s to the number of simultaneous threads allowed

Carnegie Mellon

Posix synchronization functions

� Semaphores

� sem_init

� sem_wait

� sem_post

� Read-write locks

� pthread_rwlock_init

� pthread_rwlock_rdlock

� Pthread_rwlock_wrlock

Carnegie Mellon

NETWORKING REVIEW

Carnegie Mellon

Connection Establishment Functions

� Server Sockets

� socket(…)

� bind(…)

� listen(…)

� accept(…)� accept(…)

� close(…)

� Client Sockets

� socket(…)

� connect(…)

� close(…)

Carnegie Mellon

socket(domain, type, protocol)

int sock_fd= socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);

� domain –Protocol Family to use

� PF_INET is the IPv4 family of protocols

� type –Type of protocol to usetype –Type of protocol to use

� SOCK_STREAM suggests a steady data stream with guaranteed in-order

delivery

� protocol –Specific protocol to use

� IPPROTO_TCP suggests to use TCP (stream-based socket protocol)

Carnegie Mellon

bind(sock_fd, my_addr, addrlen)

structsockaddr_insockaddr;

memset(&sockaddr, 0, sizeof(sockaddr);

sockaddr.sin_family= AF_INET;

sockaddr.sin_addr.s_addr= INADDR_ANY;

sockaddr.sin_port= htons(listenPort)

err = bind(sock_fd, (structsockaddr*) sockaddr, sizeof(sockaddr));

� sock_fd–file descriptor of socket

� my_addr–address to which to bind

� addrlen–size (in bytes) of address struct

Carnegie Mellon

listen(sock_fd, backlog)

� sock_fd–socket on which to listen

� backlog –Maximum size of list of waiting connections

err = listen(sock_fd, MAX_WAITING_CONNECTIONS);

Carnegie Mellon

accept(sock_fd, addr, addrlen)

� sock_fd–listening socket from which to accept connection

addr–pointer to sockaddrstructto hold client address

structsockaddr_inclient_addr;

socklen_tmy_addr_len= sizeof(client_addr);

client_fd= accept(listener_fd, &client_addr, &my_addr_len);

� addr–pointer to sockaddrstructto hold client address

� addrlen–pointer to length of addrthat is overwritten with
actual length of connection

Carnegie Mellon

connect(sock_fd, addr, addrlen)

� sock_fd–socket to connect to

structsockaddr_inremote_addr;

/* initialize remote_addr*/

err = connect(listener_fd, &remote_addr, sizeof(remote_addr));

� sock_fd–socket to connect to

� addr–pointer to sockaddrstructthat holds remote address

� addrlen–length of addrthat is overwritten with actual length of
connection

Carnegie Mellon

Socket Communication Functions

� send(sock_fd, buf, buf_len, flags)

� recv(sock_fd, buf, max_len, flags)

� Like read and write, but takes flags. Check man page to use
flags.flags.

Carnegie Mellon

Proxy Lab

� Graceful error handling

� Proxy should not exit once it has finished initialization

� Document design decisions

� Code organization

� Break proxy into multiple functions

� Complete lab in three stages

� Basic sequential proxy

� Handling concurrent requests

� Caching

� Understand what is robust about the rio package

� Behavior of network sockets

� You may use select, but it will be a lot more work
than threads.

Carnegie Mellon

What is a proxy?

Carnegie Mellon

What is a Caching Proxy

Carnegie Mellon

Important Notes on ProxyLab

Carnegie Mellon

RIO Package

� Provided for you in csapp.c

� The rio package has a very strict method for dealing with
error. Should your proxy use the same method?

� Remember you are submitting your files in a compressed
folder and therefore edits in your copy of csapp.c/csapp.h
should be submitted as well.should be submitted as well.

Carnegie Mellon

Gethostbyname

This is the wrapper in csapp.c. What could go wrong?

/* $begin gethostbyname */

struct hostent *Gethostbyname(const char *name) {

struct hostent *p; struct hostent *p;

if ((p = gethostbyname(name)) == NULL)
dns_error("Gethostbyname error"); return p;

}

/* $end gethostbyname */

Carnegie Mellon

Thread-Unsafe Functions (cont)

• Returning a ptr to a
static variable

• Fixes:

– 1. Rewrite code so
caller passes pointer to
struct

hostp = Malloc(...));

gethostbyname_r(name, hostp);

struct hostent

*gethostbyname(char name)

{

static struct hostent h;

<contact DNS and fill in h>

return &h;

}

struct
– Issue: Requires changes
in caller and callee

– 2. Lock-and-copy
– Issue: Requires only
simple changes in caller
(and none in callee)

– However, caller must
free memory

gethostbyname_r(name, hostp);

struct hostent

*gethostbyname_ts(char *name)

{

struct hostent *q = Malloc(...);

struct hostent *p;

P(&mutex); /* lock */

p = gethostbyname(name);

*q = *p; /* copy */

V(&mutex);

return q;

}

Carnegie Mellon

Alternative (Better) Solution

� As you know from writing malloc, many things happen
behind the scenes when malloc/free are called. This includes
overhead of both time and space.

� What might be a better solution?

Carnegie Mellon

Alternative (Better) Solution

� As you know from writing malloc, many things happen
behind the scenes when malloc/free are called. This includes
overhead of both time and space.

� What might be a better solution?

� Declare a variable on the stack and pass in a pointer to that
variable. variable.

� Why is this still ok?

� Why is it better?

Carnegie Mellon

On Testing Your Caching Proxy…

� DBUG

� Set up your browser.

Carnegie Mellon

Questions?

