
Recitation 7 Caching

By yzhuang

Announcements

 Pick up your exam from ECE course

hub

◦ Average is 43/60

◦ Final Grade computation? See syllabus

http://www.cs.cmu.edu/~213/misc/syllabu

s.pdf

 If you download cachelab before noon

of September 30, you should re-

download the tarball. See the writeup

for details.

http://www.cs.cmu.edu/~213/misc/syllabus.pdf
http://www.cs.cmu.edu/~213/misc/syllabus.pdf

Memory Hierarchy

 Registers

 SRAM

 DRAM

 Local Secondary storage

 Remote Secondary storage

Today: we study this

interaction to give you an idea

how caching works

SRAM vs DRAM

 SRAM (cache)

◦ Faster (L1 cache: 1 CPU cycle)

◦ Smaller (Megabytes)

◦ More expensive

 DRAM (main memory)

◦ Relatively slower (100 CPU cycles)

◦ Larger (Gigabytes)

◦ Cheaper

Caching

 Temporal locality
◦ A memory location accessed is likely to be

accessed again multiple times in the
future

◦ After accessing address X in memory,
save the bytes in cache for future access

 Spatial locality
◦ If a location is accessed, then nearby

locations are likely to be accessed in the
future.

◦ After accessing address X, save the block
of memory around X in cache for future
access

Memory Address

 64-bit on shark machines

 Block offset: b bits

 Set index: s bits

Cache

 A cache is a set of 2^s cache sets

 A cache set is a set of E cache lines

◦ E is called associativity

◦ If E=1, it is called “direct-mapped”

 Each cache line stores a block

◦ Each block has 2^b bytes

Cachelab

 Part (a) Building a cache simulator

 Part(b) Optimizing matrix transpose

Part(a) Cache simulator

 A cache simulator is NOT a cache!

◦ Memory contents NOT stored

◦ Block offsets are NOT used

◦ Simply counts hits, misses, and evictions

 Your cache simulator need to work for

different s, b, E, given at run time.

 Use LRU replacement policy

Cache simulator: Hints

 A cache is just 2D array of cache

lines:

◦ struct cache_line cache[S][E];

◦ S = 2^s, is the number of sets

◦ E is associativity

 Each cache_line has:

◦ Valid bit

◦ Tag

◦ LRU counter

 Matrix Transpose (A -> B)

 Matrix A Matrix B

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

Part (b) Efficient Matrix

Transpose

 Matrix Transpose (A -> B)

 Suppose block size is 8 bytes (2 ints)

 Matrix A Matrix B

Access A[0][0] cache miss

Access B[0][0] cache miss

Access A[0][1] cache hit

Access B[1][0] cache miss

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Part (b) Efficient Matrix

Transpose

Question: After we handle

1&2. Should we handle 3&4

first, or 5&6 first ?

1

2

Part (b) Hint

 What inspiration do you get from

previous slide ?

◦ Divide matrix into sub-matrices

◦ This is called blocking (CSAPP2e p.629)

◦ Size of sub-matrix depends on

 cache block size, cache size, input matrix size

◦ Try different sub-matrix sizes

 We hope you invent more tricks to

reduce the number of misses !

Part (b)

 Cache:

◦ You get 1 kilobytes of cache

◦ Directly mapped (E=1)

◦ Block size is 32 bytes (b=5)

◦ There are 32 sets (s=5)

 Test Matrices:

◦ 32 by 32, 64 by 64, 61 by 67

The End

 Good luck!

