
15-213/18-243
Intro to Computer Systems

by btan
with reference to Spring 10’s slides

 Cachelab due tomorrow 11:59pm

 Proclab out tomorrow

 Today’s recitation will be on Process
Control and Signal Handling

News

 What is a program?

 Written according to a specification that
tells users what it is supposed to do

 A bunch of data and instructions stored in
an executable binary file

 Stateless since binary file is static

Processes

 What is a process?

 A running instance of a program in execution

 One of the most profound ideas in CS

 A fundamental abstraction provided by the OS

 Single thread of execution (linear control flow) ….

 … until you create more threads (later in the course)

 Stateful:

 Full set of private address space and registers

 Other state like open file descriptors and etc.

Processes

 Four basic process control functions

 fork()

 exec*() and other variants such as execve()

 But they all fundamentally do the same thing

 exit()

 wait()

Standard on all UNIX-based systems

Don’t be confused:
Fork(), Exit(), Wait() are all wrappers provided by CSAPP

Processes

 fork()

 Creates or spawns a child process

 OS creates an exact duplicate of parent’s state:

 Virtual address space (memory), including heap and
stack

 Registers, except for the return value (%eax/%rax)

 File descriptors but files are shared

 Result  Equal but separate state

 Returns 0 for child process but child’s PID for parent

Processes

 exec*()

 Replaces the current process’s state and context

 Provides a way to load and run another program

 Replaces the current running memory image with that of
new program

 Set up stack with arguments and environment variables

 Start execution at the entry point

 The newly loaded program’s perspective: as if the
previous program has not been run before

 It is actually a family of functions

 man 3 exec

Processes

 exit()

 Terminates the current process

 OS frees resources such as heap memory
and open file descriptors and so on…

 Reduce to a zombie state =]

Must wait to be reaped by the parent
process (or the init process if the parent
died)

Reaper can inspect the exit status

Processes

 wait()

 Waits for a child process to change state

 If a child terminated, the parent “reaps” the
child, freeing all resources and getting the
exit status

 Child fully “gone” 

 For details: man 2 wait

Processes

 What are the possible
output (assuming fork
succeeds) ?

 Child!, Parent!

 Parent!, Child!

 How to get the child to
always print first?

Processes (Concurrency)

pid_t child_pid = fork();

if (child_pid == 0){

 /* only child comes here */

 printf(“Child!\n”);

 exit(0);

}

else{

 printf(“Parent!\n”);

}

int status;

pid_t child_pid = fork();

if (child_pid == 0){

 /* only child comes here */

 printf(“Child!\n”);

 exit(0);

}

else{

 waitpid(child_pid, &status, 0);

 printf(“Parent!\n”);

}

Processes (Concurrency)

 Waits til the child has terminated.
 Parent can inspect exit status of
 child using ‘status’

 WEXITSTATUS(status)

 Output always: Child!, Parent!

Processes (Concurrency)

int status;

pid_t child_pid = fork();

char* argv[] = {“ls”, “-l”, NULL};

char* env[] = {…, NULL};

if (child_pid == 0){

 /* only child comes here */

 execve(“/bin/ls”, argv, env);

 /* will child reach here? */

}

else{

 waitpid(child_pid, &status, 0);

 … parent continue execution…

}

 An example of something
useful.

 Why is the first arg “ls”?

 Will child reach here?

 Four basic States

 Running

 Executing instructions on the CPU

 Number bounded by number of CPU cores

 Runnable

 Waiting to be running

 Blocked

 Waiting for an event, maybe input from STDIN

 Not runnable

 Zombie =]

 Terminated, not yet reaped

Processes

 Primitive form of interprocess communication

 Notify a process of an event

 Asynchronous with normal execution

 Come in several types

 man 7 signal

 Sent in various ways

 Ctrl+C, Ctrl+Z

 kill()

 kill utility

Signals

 Handling signals

 Ignore

 Catch and run signal handler

 Terminate, and optionally dump core

 Blocking signals

 sigprocmask()

 Waiting for signals

 sigsuspend()

 Can’t modify behavior of SIGKILL and SIGSTOP

 Non-queuing

Signals

 Signal handlers

 Can be installed to run when a signal is received

 The form is void handler(int signum){ …. }

 Separate flow of control in the same process

 Resumes normal flow of control upon returning

 Can be called anytime when the appropriate signal is
fired

Signals

Signals (Concurrency)

….install sigchld handler…

pid_t child_pid = fork();

if (child_pid == 0){

 /* child comes here */

 execve(……);

}

else{

 add_job(child_pid);

}

void sigchld_handler(int signum)

{

 int status;

 pid_t child_pid =

 waitpid(-1, &status, WNOHANG);

 if (WIFEXITED(status))

 remove_job(child_pid);

}

What could happen here?

How to solve this issue?
Block off SIGCHLD signal at the
appropriate places. You’d have to think of
it yourself.

 A series of puzzles on process control and signal
handling

 Correct use of system functions

 Test your understanding of the concepts

 Should not need to write a lot of code

 5 Style points – Yes, we will read your code

 Details in the handout

ProcLab

 Thank you

Q & A

