15-213/18-243
Intro to Computer Systems

by btan
with reference to Spring 10’s slides

\
+ Cachelab due tomorrow 11:59pm

+* Proclab out tomorrow

+ Today’s recitation will be on Process
Control and Signal Handling

\

Processes

* What is a program?

* Written according to a specification that

tells users w

+ A bunch of d
an executab

nat it is supposed to do
ata and instructions stored in

e binary file

+ Stateless since binary file is static

Processes

\

* What is a process?
* A running instance of a program in execution
* One of the most profound ideas in CS

* A fundamental abstraction provided by the OS
Single thread of execution (linear control flow)....
*# ... until you create more threads (later in the course)
« Stateful:
* Full set of private address space and registers
* Other state like open file descriptors and etc.

Processes

-‘
* Four basic process control functions
+ fork()

« exec*() and other variants such as execve()

* But they all fundamentally do the same thing
« exit()

« wait()
Standard on all UNIX-based systems

Don’t be confused:
Fork(), Exit(), Wait() are all wrappers provided by CSAPP

Processes

o
+ fork()

* Creates or spawns a child process

 OS creates an exact duplicate of parent’s state:

* Virtual address space (memory), including heap and
stack

« Registers, except for the return value (%eax/%rax)
* File descriptors but files are shared

* Result = Equal but separate state

* Returns o for child process but child’s PID for parent

Processes

\
+ exec*() —

* Replaces the current process’s state and context

* Provides a way to load and run another program

* Replaces the current running memory image with that of
new program

* Set up stack with arguments and environment variables
* Start execution at the entry point

* The newly loaded program’s perspective: as if the
previous program has not been run before

It is actually a family of functions
* man 3 exec

Processes
-‘
« exit()

* Terminates the current process

OS frees resources such as heap memory
and open file descriptors and so on...

+ Reduce to a zombie state =]

* Must wait to be reaped by the parent
process (or the init process if the parent
died)

+ Reaper can inspect the exit status

Processes

\

wait()
* Waits for a child process to change state

+ If a child terminated, the parent “reaps” the
child, freeing all resources and getting the
exit status

+ Child fully “gone” ®
+ For details: man 2 wait

Processes (Concurrency)

‘\

pid t child pid = fork();

if (child pid == 0){ * What are the possible
* : * .
/* only child comes here */ output (assummg fork
printf (“Child!\n”); succeeds)?
, * Child!, Parent!
exit (0) ; .
} * Parent!, Child!
else{

printf (“Parent!\n”);

* How to get the child to

}
always print first?

Processes (Concurrency)

int status;

pid t child pid = fork();
* Waits til the child has terminated.
if (child pid == 0){ , :
/% only child comes here */ Parent can inspect exit status of
child using ‘status’

+ WEXITSTATUS(status)

printf (“Child!\n”);

exit (0) ;
}

else{
waltpid(child pid, &status, 0);

printf (“Parent!\n”);

} * Qutput always: Child!, Parent!

Processes (Concurrency)

int status; ‘\

pid t child pid = fork();
char* argv[] = {“1s”, “-1"”, NULL};
char* env|[] = {.., NULL};

* An example of something
useful.

* Why is the first arg “Is’”?

if (child pid == 0)
/* only child comes here */

execve (“/bin/1s”, argv, env);

/* will child reach here? */<— Will child reach here?
| :

else/{
waltpid(child pid, &status, 0);

.. parent continue execution..

Processes

T ==

tes —~l—

* Four basic Sta
* Running
* Executing instructions on the CPU
* Number bounded by number of CPU cores
* Runnable
* Waiting to be running
+ Blocked
* Waiting for an event, maybe input from STDIN
* Not runnable
Zombie =]
* Terminated, not yet reaped

*

*

*

*

*

‘\

Primitive form of interprocess communication

Notify a process of an event
Asynchronous with normal execution
Come in several types

* man 7 signal

Sent in various ways

« Ctrl+C, Ctrl+Z

 kill()

« kill utility

*

*

*

*

Handling signals =
* lgnore

* Catch and run signal handler

* Terminate, and optionally dump core
Blocking signals

sigprocmask()

Waiting for signals

sigsuspend()

Can’t modify behavior of SIGKILL and SIGSTOP
Non-queuing

\

* Signal handlers
* Can be installed to run when a signal is received
The formis void handler(int signum){....}
« Separate flow of control in the same process
* Resumes normal flow of control upon returning

* Can be called anytime when the appropriate signal is
fired

Signals (Concurrency)

\

...install sigchld handler.. void sigchld handler (int signum)
_ . . {

pid t child pid = fork(); int status;

if (child pid == 0) { . pid t child pid =
. . _ _
/* child comes here */ waitpid (-1, &status, WNOHANG) ;
execve (...); if (WIFEXITED (status))

} remove Jjob (child pid);

else(} - B

add job(child pid);

} How to solve this issue?
Block off SIGCHLD signal at the
appropriate places. You’d have to think of

What could happen here?)
it yourself.

*

*

*

*

*

*

ProcLab
\

A series of puzzles on process control and signal
handling

Correct use of system functions

Test your understanding of the concepts
Should not need to write a lot of code

5 Style points — Yes, we will read your code
Details in the handout

* Thank you

