15-213

Intro to Computer Systems
 Recitation \#1

By sseshadr

Today

- Introductions
- Datalab Tricks
- Floating point questions? Go to Office Hours.
- Integer Puzzles
- Parity Example
- Style

Introductions

Datalab Tricks

- Basics

$$
\begin{aligned}
& -\gg, \ll \\
& -\mid \text { vs. || } \\
& -\& \text { vs. \&\& } \\
& - \text { ! vs. } \sim
\end{aligned}
$$

- What is x ?

$$
\begin{aligned}
& \text {-int } x=(9 \quad \mid \quad 12) \ll 1 ; \\
& -x=26
\end{aligned}
$$

Datalab Tricks

- Trick \#1: Signed-ness
- The MOST significant bit
- 0 -> positive or zero
- 1 -> negative
- What is...
- int $x=(10 \gg 31)$;
- int $y=(-10 \gg 31) ;$
- It's NOT 1 (what is arithmetic shifting?)
- How do we fix that?
- Answers:
- $x=0$ and $y=-1$

Datalab Tricks

- Trick \#2: Properties of Zero
- Masking
- 0 \& (something) == 0 [why?]
- (0-1) \& (something) == something [why?]
- Why is this useful?
- Positive zero vs. negative zero
- int $x=0$; int $y=-x$;
- Neither x nor y is negative (MSB is 0 for both)
- Why is this useful?

Datalab Tricks

- Trick \#3: Negation
- Review: take a 5-bit twos compliment system

$$
-16+2=-14
$$

Datalab Tricks

- Trick \#3: Negation
- Review: take a 5-bit twos compliment system

$$
8+4+2=14
$$

Datalab Tricks

- Trick \#3: Negation
- Example:

$$
\begin{array}{lllllll}
1 & 0 & 0 & 1 & 0 & \text { int } x=-14 ; / /-14 \\
0 & 1 & 1 & 0 & 1 & \text { int } y=\sim x ; / / 13 \\
0 & 1 & 1 & 1 & 0 & \text { int } z=\sim x+1 ; / / 14
\end{array}
$$

Datalab Tricks

- Trick \#3: Negation
- In general

$$
-x==(\sim x+1)
$$

- Does this always work?
- Tmin?
- No!
- Tmax?
- Yes!
- Zero?
- Yes!
- Everything else?
- Yes!

Integer Puzzles

Integer C Puzzles

- $\mathrm{x}<0$
- $u x>=0$
- $x \& 7=7$
- $u x>-1$
- $x>y$
- $x^{*} x>=0$

Initialization

```
int x = foo();
int y = bar();
unsigned ux = x;
unsigned uy = y;
```

- $(x \mid-x) \gg 31==-1$
- $u x \gg 3==u x / 8$
- $x \gg 3=x / 8$
- $x>0 \& \& y>0$
$\Rightarrow x+y>0$
- $x>=0$
$\Rightarrow-x<=0$
- $\mathrm{x}<=0$
$\Rightarrow-x>=0$
- $x \&(x-1)!=0$

Integer Puzzles

- $(x<0)=>((x * 2)<0)$
- Nope. Tmin?
- (ux >= 0)
- Yup!
- (x\&7 == 7) $=>((x \ll 30)<0)$
- Yup!
$-(x \& 7==7)$ means last 3 bits are 1
- Examine the "negative bit" of ($x \ll 30$)

Integer Puzzles

- (ux > -1)
- Nope. Unsigned comparison means -1 is Umax!
- $(\mathrm{X}>\mathrm{Y})=>(-\mathrm{x}<-\mathrm{y})$
- Nope. Boundary cases.
$-x=0, y=\operatorname{Tmin}$ (what is $-\operatorname{Tmin} ?)$
- ($\left.\mathrm{X}^{*} \mathrm{X}>=0\right)$
- Nope. Overflow into "negative bit"
- int x = 65535; // 2^16-1

Integer Puzzles

- $(x>0 \& \& y>0)=>(x+y>0)$
- Nope. Overflow into "negative bit"
$-\mathrm{x}, \mathrm{y}=\mathrm{Tmax}$
- ($\mathrm{x}>=0$) $=>(-\mathrm{x}<=0)$
- Yup! Why doesn't break for Tmax?
- ($\mathrm{x}<=0$) $=>(-\mathrm{x}>=0)$
- Nope. What is - Tmin?

Integer Puzzles

- $(x \mid-x) \gg 31==-1$
- Nope. $x=0$
- (ux >> 3) $==($ ux / 8)
- Yup!
- $(x \gg 3)==(x / 8)$
- Nope. Careful on rounding!
$-\operatorname{int} x=-19$;
$-\operatorname{int} y=x \gg 3$;
$/ / y=-3$
- int $z=x / 8 ;$
$/ / z=-2$

Integer Puzzles

$(x \&(x-1))!=0$

- Nope. $x=0, x=1$

Parity Example

- Write a function which takes an integer and returns
-1 if there are an odd number of ' 1 ' bits
-0 if there are an even number of ' 1 ' bits
int parity_check(int x) \{
$\}$
- Any ideas?

Parity Example

- Inspiration:
- If we could XOR all of the bits in the argument... we would get the answer!

11011001011000111110010100101101
11011001011000111110010100101101

	1101100101100011
1110010100101101	

0011110001001110

Parity Example

- Just keep going!

0011110001001110
0011110001001110

XOR | 00111100 |
| :--- |
| |
| 01001110 |
| $01110010 \quad$ (down to 8 bits) |

Parity Example

- Just keep going!

01110010

01110010

xor	0111	
0010		
0101	(down to 4 bits)	

Parity Example

- You can take it from there.
- Still confused on high-level algorithm? Can't write the C code for the Parity Problem? Office Hours.

Style

- Here is what we grade on:
- http://www.cs.cmu.edu/~213/codeStyle.html
- It is in your best interest to read it ASAP!
- Autolab isn't the whole grade. We read your code.

Style

- Documentation
- Whitespace
- Line length
- Variable names
- Magic Numbers
- Dead Code
- Modularity
- Error checking
- Consistency

