Bits, Bytes, and Integers

15-213: Introduction to Computer Systems
2nd Lecture, Aug. 26, 2010

Instructors:
Randy Bryant and Dave O’Hallaron
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

- Summary
Binary Representations
Encoding Byte Values

- **Byte = 8 bits**
 - Binary: 00000000₂ to 11111111₂
 - Decimal: 0₁₀ to 255₁₀
 - Hexadecimal: 00₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
 - Write FA1D37B₁₆ in C as
 - 0xFA1D37B
 - 0xfa1d37b
Byte-Oriented Memory Organization

- **Programs Refer to Virtual Addresses**
 - Conceptually very large array of bytes
 - Actually implemented with hierarchy of different memory types
 - System provides address space private to particular “process”
 - Program being executed
 - Program can clobber its own data, but not that of others

- **Compiler + Run-Time System Control Allocation**
 - Where different program objects should be stored
 - All allocation within single virtual address space
Machine Words

- **Machine Has “Word Size”**
 - Nominal size of integer-valued data
 - Including addresses
 - Most current machines use 32 bits (4 bytes) words
 - Limits addresses to 4GB
 - Becoming too small for memory-intensive applications
 - High-end systems use 64 bits (8 bytes) words
 - Potential address space ≈ 1.8×10^{19} bytes
 - x86-64 machines support 48-bit addresses: 256 Terabytes
 - Machines support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes
Word-Oriented Memory Organization

- **Addresses Specify Byte Locations**
 - Address of first byte in word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)
Data Representations

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>Typical 32-bit</th>
<th>Intel IA32</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>long</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>long long</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>long double</td>
<td>8</td>
<td>10/12</td>
<td>10/16</td>
</tr>
<tr>
<td>pointer</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>
Byte Ordering

- How should bytes within a multi-byte word be ordered in memory?

- Conventions
 - Big Endian: Sun, PPC Mac, Internet
 - Least significant byte has highest address
 - Little Endian: x86
 - Least significant byte has lowest address
Byte Ordering Example

- **Big Endian**
 - Least significant byte has highest address

- **Little Endian**
 - Least significant byte has lowest address

- **Example**
 - Variable x has 4-byte representation 0x01234567
 - Address given by &x is 0x100

Big Endian

<table>
<thead>
<tr>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>01</td>
<td>23</td>
<td>45</td>
</tr>
</tbody>
</table>

Little Endian

<table>
<thead>
<tr>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>67</td>
<td>45</td>
<td>23</td>
</tr>
</tbody>
</table>
Reading Byte-Reversed Listings

- **Disassembly**
 - Text representation of binary machine code
 - Generated by program that reads the machine code

- **Example Fragment**

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction Code</th>
<th>Assembly Rendition</th>
</tr>
</thead>
<tbody>
<tr>
<td>8048365:</td>
<td>5b</td>
<td>pop %ebx</td>
</tr>
<tr>
<td>8048366:</td>
<td>81 c3 ab 12 00 00</td>
<td>add $0x12ab,%ebx</td>
</tr>
<tr>
<td>804836c:</td>
<td>83 bb 28 00 00 00</td>
<td>cmpl $0x0,0x28(%ebx)</td>
</tr>
</tbody>
</table>

- **Deciphering Numbers**
 - Value: 0x12ab
 - Pad to 32 bits: 0x000012ab
 - Split into bytes: 00 00 12 ab
 - Reverse: ab 12 00 00
Examining Data Representations

- Code to Print Byte Representation of Data
- Casting pointer to unsigned char * creates byte array

```c
typedef unsigned char *pointer;

void show_bytes(pointer start, int len){
    int i;
    for (i = 0; i < len; i++)
        printf("%p\t0x%.2x\n",start+i, start[i]);
    printf("\n");
}
```

Printf directives:
- %p: Print pointer
- %x: Print Hexadecimal
show_bytes Execution Example

```c
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux):

```c
int a = 15213;
0x11ffffffcb8 0x6d
0x11ffffffcb9 0x3b
0x11ffffffcba 0x00
0x11ffffffcbb 0x00
```
Representing Integers

int A = 15213;

long int C = 15213;

int B = -15213;

Two’s complement representation (Covered later)
Representing Pointers

```c
int B = -15213;
int *P = &B;
```

<table>
<thead>
<tr>
<th></th>
<th>Sun</th>
<th>IA32</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EF</td>
<td>D4</td>
<td>0C</td>
</tr>
<tr>
<td></td>
<td>FF</td>
<td>F8</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>FB</td>
<td>FF</td>
<td>EC</td>
</tr>
<tr>
<td></td>
<td>2C</td>
<td>BF</td>
<td>FF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>FF</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7F</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>00</td>
</tr>
</tbody>
</table>

Different compilers & machines assign different locations to objects
Representing Strings

- **Strings in C**
 - Represented by array of characters
 - Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character “0” has code 0x30
 - Digit i has code 0x30+i
 - String should be null-terminated
 - Final character = 0

- **Compatibility**
 - Byte ordering not an issue

```
char S[6] = "18243";
```
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary
Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode “True” as 1 and “False” as 0

And
- \(A \& B = 1 \) when both \(A=1 \) and \(B=1 \)

<table>
<thead>
<tr>
<th>&</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Or
- \(A \mid B = 1 \) when either \(A=1 \) or \(B=1 \)

| \mid | 1 | 0 | 1 |
|---|---|---|
| 0 | 0 | 1 |
| 1 | 1 | 1 |

Not
- \(\neg A = 1 \) when \(A=0 \)

<table>
<thead>
<tr>
<th>\neg</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Exclusive-Or (Xor)
- \(A^{\wedge}B = 1 \) when either \(A=1 \) or \(B=1 \), but not both

<table>
<thead>
<tr>
<th>^</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Application of Boolean Algebra

- Applied to Digital Systems by Claude Shannon
 - 1937 MIT Master’s Thesis
 - Reason about networks of relay switches
 - Encode closed switch as 1, open switch as 0

\[A \rightarrow \sim A \sim B \rightarrow B \]

Connection when

\[A \& \sim B \lor \sim A \& B \]

\[= A \wedge B \]
General Boolean Algebras

- **Operate on Bit Vectors**
 - Operations applied bitwise

 \[
 \begin{align*}
 01101001 \& 01010101 &= 01000001 \\
 01101001 \mid 01010101 &= 01111101 \\
 01101001 ^ 01010101 &= 00111100 \\
 ~01010101 &= 10101010
 \end{align*}
 \]

- **All of the Properties of Boolean Algebra Apply**
Representing & Manipulating Sets

Representation
- Width w bit vector represents subsets of \{0, ..., w–1\}
- \(a_j = 1\) if \(j \in A\)

\[
\begin{align*}
01101001 & \quad \{0, 3, 5, 6\} \\
76543210 & \\
01010101 & \quad \{0, 2, 4, 6\} \\
76543210 &
\end{align*}
\]

Operations
- & Intersection \(01000001\) \(\{0, 6\}\)
- | Union \(01111101\) \(\{0, 2, 3, 4, 5, 6\}\)
- ^ Symmetric difference \(00111100\) \(\{2, 3, 4, 5\}\)
- ~ Complement \(10101010\) \(\{1, 3, 5, 7\}\)
Bit-Level Operations in C

- **Operations &, |, ~, ^ Available in C**
 - Apply to any “integral” data type
 - long, int, short, char, unsigned
 - View arguments as bit vectors
 - Arguments applied bit-wise

- **Examples (Char data type)**
 - ~0x41 ➞ 0xBE
 - ~01000001₂ ➞ 10111110₂
 - ~0x00 ➞ 0xFF
 - ~00000000₂ ➞ 11111111₂
 - 0x69 & 0x55 ➞ 0x41
 - 01101001₂ & 01010101₂ ➞ 01000001₂
 - 0x69 | 0x55 ➞ 0x7D
 - 01101001₂ | 01010101₂ ➞ 01111101₂
Contrast: Logic Operations in C

- **Contrast to Logical Operators**
 - &&, ||, !
 - View 0 as “False”
 - Anything nonzero as “True”
 - Always return 0 or 1
 - Early termination

- **Examples (char data type)**
 - !0x41 ➔ 0x00
 - !0x00 ➔ 0x01
 - !!!0x41 ➔ 0x01
 - 0x69 && 0x55 ➔ 0x01
 - 0x69 || 0x55 ➔ 0x01
 - p && *p (avoids null pointer access)
Shift Operations

- **Left Shift**: \(x << y \)
 - Shift bit-vector \(x \) left \(y \) positions
 - Throw away extra bits on left
 - Fill with 0’s on right

- **Right Shift**: \(x >> y \)
 - Shift bit-vector \(x \) right \(y \) positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0’s on left
 - Arithmetic shift
 - Replicate most significant bit on right

- **Undefined Behavior**
 - Shift amount < 0 or \(\geq \) word size
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

- Summary
Encoding Integers

Unsigned

\[B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \]

Two’s Complement

\[B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \]

C short 2 bytes long

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>(y)</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
</tbody>
</table>

Sign Bit

- For 2’s complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative
Encoding Example (Cont.)

\[
x = \quad 15213: \quad 00111011 \quad 01101101 \\
y = \quad -15213: \quad 11000100 \quad 10010011
\]

<table>
<thead>
<tr>
<th>Weight</th>
<th>15213</th>
<th>-15213</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>32</td>
</tr>
<tr>
<td>64</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>128</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>256</td>
<td>1</td>
<td>256</td>
</tr>
<tr>
<td>512</td>
<td>1</td>
<td>512</td>
</tr>
<tr>
<td>1024</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2048</td>
<td>1</td>
<td>2048</td>
</tr>
<tr>
<td>4096</td>
<td>1</td>
<td>4096</td>
</tr>
<tr>
<td>8192</td>
<td>1</td>
<td>8192</td>
</tr>
<tr>
<td>16384</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-32768</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Sum
\[
15213 \\
-15213
\]
Numeric Ranges

- **Unsigned Values**
 - $U_{Min} = 0$
 - 000...0
 - $U_{Max} = 2^w - 1$
 - 111...1

- **Two's Complement Values**
 - $T_{Min} = -2^{w-1}$
 - 100...0
 - $T_{Max} = 2^{w-1} - 1$
 - 011...1

- **Other Values**
 - Minus 1
 - 111...1

Values for $W = 16$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_{Max}</td>
<td>65535</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>T_{Max}</td>
<td>32767</td>
<td>7F FF</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>T_{Min}</td>
<td>-32768</td>
<td>80 00</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Values for Different Word Sizes

<table>
<thead>
<tr>
<th></th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td>UMax</td>
<td>255</td>
</tr>
<tr>
<td>Tmax</td>
<td>127</td>
</tr>
<tr>
<td>Tmin</td>
<td>-128</td>
</tr>
</tbody>
</table>

Observations
- $|TMin| = Tmax + 1$
 - Asymmetric range
- $UMax = 2 \times Tmax + 1$

C Programming
- `#include <limits.h>`
- Declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
- Values platform specific
Unsigned & Signed Numeric Values

- **Equivalence**
 - Same encodings for nonnegative values

- **Uniqueness**
 - Every bit pattern represents unique integer value
 - Each representable integer has unique bit encoding

- **Can Invert Mappings**
 - $U2B(x) = B2U^{-1}(x)$
 - Bit pattern for unsigned integer
 - $T2B(x) = B2T^{-1}(x)$
 - Bit pattern for two’s comp integer

<table>
<thead>
<tr>
<th>x</th>
<th>$B2U(x)$</th>
<th>$B2T(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>-1</td>
</tr>
</tbody>
</table>
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

- Summary
Mapping Between Signed & Unsigned

Two’s Complement

\[x \rightarrow T2B \rightarrow B2U \rightarrow \text{Unsigned} \]

Unsigned

\[\text{Unsigned} \rightarrow U2T \rightarrow B2T \rightarrow x \]

Maintain Same Bit Pattern

- Mappings between unsigned and two’s complement numbers:
 keep bit representations and reinterpret
Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>
Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>
Relation between Signed & Unsigned

Two’s Complement

\[x \xrightarrow{T2B} X \xrightarrow{B2U} u x \]

Unsigned

Maintain Same Bit Pattern

Large negative weight becomes
Large positive weight

\[u x = \begin{cases} x & x \geq 0 \\ x + 2^w & x < 0 \end{cases} \]
Conversion Visualized

- 2’s Comp. → Unsigned
 - Ordering Inversion
 - Negative → Big Positive

2’s Complement Range

TMax

0

-1

-2

TMin

UMax

UMax - 1

TMax + 1

TMax

Unsigned Range
Signed vs. Unsigned in C

- **Constants**
 - By default are considered to be signed integers
 - Unsigned if have “U” as suffix
 - 0U, 4294967259U

- **Casting**
 - Explicit casting between signed & unsigned same as U2T and T2U
    ```c
    int tx, ty;
    unsigned ux, uy;
    tx = (int) ux;
    uy = (unsigned) ty;
    ```
 - Implicit casting also occurs via assignments and procedure calls
    ```c
    tx = ux;
    uy = ty;
    ```
Casting Surprises

- **Expression Evaluation**
 - If there is a mix of unsigned and signed in single expression, *signed values implicitly cast to unsigned*
 - Including comparison operations `<`, `>`, `==`, `<=`, `>=`
 - Examples for $W = 32$: $\text{TMIN} = -2,147,483,648$, $\text{TMAX} = 2,147,483,647$

<table>
<thead>
<tr>
<th>Constant<sub>1</sub></th>
<th>Constant<sub>2</sub></th>
<th>Relation</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0U</td>
<td>==</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td><</td>
<td>signed</td>
</tr>
<tr>
<td>-1</td>
<td>0U</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>-2147483647-1</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>2147483647U</td>
<td>-2147483647-1</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>(unsigned)-1</td>
<td>-2</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>2147483648U</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>(int) 2147483648U</td>
<td>></td>
<td>signed</td>
</tr>
</tbody>
</table>
Code Security Example

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
 /* Byte count len is minimum of buffer size and maxlen */
 int len = KSIZE < maxlen ? KSIZE : maxlen;
 memcpy(user_dest, kbuf, len);
 return len;
}

- Similar to code found in FreeBSD’s implementation of getpeername
- There are legions of smart people trying to find vulnerabilities in programs
Typical Usage

```c
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}

#define MSIZE 528

void getstuff() {
    char mybuf[MSIZE];
    copy_from_kernel(mybuf, MSIZE);
    printf("%s\n", mybuf);
}
```
Malicious Usage

```c
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}
```

```c
#define MSIZE 528

void getstuff() {
    char mybuf[MSIZE];
    copy_from_kernel(mybuf, -MSIZE);
    ...
}
```
Summary
Casting Signed \leftrightarrow Unsigned: Basic Rules

- Bit pattern is maintained
- But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w

- Expression containing signed and unsigned int
 - int is cast to unsigned!!
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting

Summary
Sign Extension

- **Task:**
 - Given \(w \)-bit signed integer \(x \)
 - Convert it to \(w+k \)-bit integer with same value

- **Rule:**
 - Make \(k \) copies of sign bit:
 - \(X' = x_{w-1}, \ldots, x_{w-1}, x_{w-2}, \ldots, x_0 \)

\[\begin{array}{c}\vdots \\
X' \\
\vdots \end{array} \quad \begin{array}{c} k \text{ copies of MSB} \\
X \end{array} \quad \begin{array}{c} \rightarrow \quad w \quad \rightarrow \end{array} \]
Sign Extension Example

short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>ix</td>
<td>15213</td>
<td>00 00 3B 6D</td>
<td>00000000 00000000 00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>iy</td>
<td>-15213</td>
<td>FF FF C4 93</td>
<td>11111111 11111111 11000100 10010011</td>
</tr>
</tbody>
</table>

- Converting from smaller to larger integer data type
- C automatically performs sign extension
Summary:
Expanding, Truncating: Basic Rules

- Expanding (e.g., short int to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result

- Truncating (e.g., unsigned to unsigned short)
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod
 - For small numbers yields expected behaviour
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Summary
Negation: Complement & Increment

- **Claim:** Following holds for 2’s Complement
 \[\sim x + 1 = -x \]

- **Complement**
 - Observation: \(\sim x + x = 1111\ldots111 = -1 \)

\[
\begin{array}{cccccccc}
 & & & & & & & \\
 & & & & & & & \\
 & & & & & & & \\
 & & & & & & & \\
 x & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
 + & \sim x & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
\hline
-1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}
\]

- **Complete Proof?**
Complement & Increment Examples

\[x = 15213 \]

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>(\sim x)</td>
<td>-15214</td>
<td>C4 92</td>
<td>11000100 10010010</td>
</tr>
<tr>
<td>(\sim x + 1)</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>(y)</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
</tbody>
</table>

\[x = 0 \]

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
<tr>
<td>(\sim 0)</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>(\sim 0 + 1)</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Unsigned Addition

Operands: w bits

$$u \quad \begin{array}{c}
\vdots \\
\vdots
\end{array}
$$

$$+
\quad \begin{array}{c}
\vdots \\
\vdots
\end{array}
v$$

True Sum: $w+1$ bits

$$u + v \quad \begin{array}{c}
\vdots \\
\vdots
\end{array}$$

Discard Carry: w bits

$$UAdd_w(u, v) \quad \begin{array}{c}
\vdots \\
\vdots
\end{array}$$

- **Standard Addition Function**
 - Ignores carry output

- **Implements Modular Arithmetic**

 $$\begin{array}{c}
s \\
= UAdd_w(u, v)
\end{array} = u + v \mod 2^w$$

$$UAdd_w(u, v) = \begin{cases}
 u + v & u + v < 2^w \\
 u + v - 2^w & u + v \geq 2^w
\end{cases}$$
Visualizing (Mathematical) Integer Addition

- **Integer Addition**
 - 4-bit integers \(u, v \)
 - Compute true sum \(\text{Add}_4(u, v) \)
 - Values increase linearly with \(u \) and \(v \)
 - Forms planar surface
Visualizing Unsigned Addition

- Wraps Around
 - If true sum \(\geq 2^w \)
 - At most once

\[
\text{Overflow}
\]

\[
\text{UAdd}_4(u, v)
\]

True Sum
- \(2^{w+1} \)
- \(2^w \)
- 0

Modular Sum
Mathematical Properties

- **Modular Addition Forms an Abelian Group**
 - **Closed** under addition
 \[0 \leq \text{UAdd}_w(u, v) \leq 2^w - 1 \]
 - **Commutative**
 \[\text{UAdd}_w(u, v) = \text{UAdd}_w(v, u) \]
 - **Associative**
 \[\text{UAdd}_w(t, \text{UAdd}_w(u, v)) = \text{UAdd}_w(\text{UAdd}_w(t, u), v) \]
 - **0 is additive identity**
 \[\text{UAdd}_w(u, 0) = u \]
 - **Every element has additive inverse**
 - Let \(\text{UComp}_w(u) = 2^w - u \)
 \[\text{UAdd}_w(u, \text{UComp}_w(u)) = 0 \]
Two’s Complement Addition

Operands: \(w \) bits

\[
\begin{array}{c}
\text{u} \\
+ \text{v} \\
\text{u} + \text{v}
\end{array}
\]

True Sum: \(w+1 \) bits

Discard Carry: \(w \) bits

\[
\text{TAdd}_w(u, v)
\]

- **TAdd and UAdd have Identical Bit-Level Behavior**
 - Signed vs. unsigned addition in C:
    ```c
    int s, t, u, v;
    s = (int) ((unsigned) u + (unsigned) v);
    t = u + v
    ```
 - Will give \(s == t \)
TAdd Overflow

Functionality

- True sum requires \(w+1 \) bits
- Drop off MSB
- Treat remaining bits as 2’s comp. integer

<table>
<thead>
<tr>
<th>True Sum</th>
<th>TAdd Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 111...1</td>
<td>011...1</td>
</tr>
<tr>
<td>0 100...0</td>
<td>000...0</td>
</tr>
<tr>
<td>0 000...0</td>
<td>100...0</td>
</tr>
<tr>
<td>1 011...1</td>
<td>(-2^{w-1}-1)</td>
</tr>
<tr>
<td>1 000...0</td>
<td>(-2^w)</td>
</tr>
</tbody>
</table>
Visualizing 2’s Complement Addition

- **Values**
 - 4-bit two’s comp.
 - Range from -8 to +7

- **Wraps Around**
 - If sum ≥ 2^{w-1}
 - Becomes negative
 - At most once
 - If sum < -2^{w-1}
 - Becomes positive
 - At most once
Characterizing TAdd

Functionality

- True sum requires $w+1$ bits
- Drop off MSB
- Treat remaining bits as 2’s comp. integer

\[
TAdd_w(u,v) = \begin{cases}
 u + v + 2^w & u + v < Tmin_w \quad \text{(NegOver)} \\
 u + v & Tmin_w \leq u + v \leq Tmax_w \\
 u + v - 2^w & Tmax_w < u + v \quad \text{(PosOver)}
\end{cases}
\]
Mathematical Properties of TAdd

- **Isomorphic Group to unsigneds with UAdd**
 - $T\text{Add}_w(u, v) = U2T(U\text{Add}_w(T2U(u), T2U(v)))$
 - Since both have identical bit patterns

- **Two’s Complement Under TAdd Forms a Group**
 - Closed, Commutative, Associative, 0 is additive identity
 - Every element has additive inverse

$$T\text{Comp}_w(u) = \begin{cases} -u & u \neq T\text{Min}_w \\ T\text{Min}_w & u = T\text{Min}_w \end{cases}$$
Multiplication

- **Computing Exact Product of w-bit numbers x, y**
 - Either signed or unsigned

- **Ranges**
 - **Unsigned**: $0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1$
 - Up to $2w$ bits
 - **Two’s complement min**: $x \times y \geq (-2^{w-1}) \times (2^{w-1} - 1) = -2^{2w-2} + 2^{w-1}$
 - Up to $2w-1$ bits
 - **Two’s complement max**: $x \times y \leq (-2^{w-1})^2 = 2^{2w-2}$
 - Up to $2w$ bits, but only for $(TMin_w)^2$

- **Maintaining Exact Results**
 - Would need to keep expanding word size with each product computed
 - Done in software by “arbitrary precision” arithmetic packages
Unsigned Multiplication in C

Operands: \(w \) bits

\[
\begin{array}{c}
\text{True Product: } 2^w \text{ bits} \\
\begin{array}{c}
\times \\
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\text{Discard } w \text{ bits: } w \text{ bits} \\
\end{array}
\]

- **Standard Multiplication Function**
 - Ignores high order \(w \) bits

- **Implements Modular Arithmetic**
 \[
 \text{UMult}_w(u, v) = u \cdot v \mod 2^w
 \]
Code Security Example #2

- SUN XDR library
 - Widely used library for transferring data between machines

```c
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size);
```

![Diagram showing the function call and memory allocation]
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size) {
 /*
 * Allocate buffer for ele_cnt objects, each of ele_size bytes
 * and copy from locations designated by ele_src
 */
 void *result = malloc(ele_cnt * ele_size);
 if (result == NULL)
 /* malloc failed */
 return NULL;
 void *next = result;
 int i;
 for (i = 0; i < ele_cnt; i++) {
 /* Copy object i to destination */
 memcpy(next, ele_src[i], ele_size);
 /* Move pointer to next memory region */
 next += ele_size;
 }
 return result;
}
XDR Vulnerability

\[
\text{malloc}(\text{ele}_\text{cnt} \times \text{ele}_\text{size})
\]

- **What if:**
 - \(\text{ele}_\text{cnt} \quad = \quad 2^{20} + 1 \)
 - \(\text{ele}_\text{size} \quad = \quad 4096 \quad = \quad 2^{12} \)
 - Allocation = ??

- **How can I make this function secure?**
Signed Multiplication in C

Operands: \(w \) bits

True Product: \(2^w \) bits

Discard \(w \) bits: \(w \) bits

\[
\begin{array}{c}
\text{TMult}_w(u, v) \\
\text{Mul}(u, v) \\
\text{Standard Mul}(u, v)
\end{array}
\]

Standard Multiplication Function

- Ignores high order \(w \) bits
- Some of which are different for signed vs. unsigned multiplication
- Lower bits are the same
Power-of-2 Multiply with Shift

Operation
- **u << k** gives **u * 2^k**
- Both signed and unsigned

Operands: w bits

<table>
<thead>
<tr>
<th>True Product: w+k bits</th>
<th>u * 2^k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discard k bits: w bits</td>
<td>UMult_w(u, 2^k)</td>
</tr>
<tr>
<td>TMult_w(u, 2^k)</td>
<td></td>
</tr>
</tbody>
</table>

Examples
- **u << 3** == **u * 8**
- **u << 5 - u << 3** == **u * 24**
- Most machines shift and add faster than multiply
 - Compiler generates this code automatically
Compiled Multiplication Code

C Function

```c
int mul12(int x) {
    return x*12;
}
```

Compiled Arithmetic Operations

```
leal (%eax,%eax,2), %eax
sall $2, %eax
```

Explanation

```
t <- x+x*2
return t << 2;
```

- C compiler automatically generates shift/add code when multiplying by constant
Unsigned Power-of-2 Divide with Shift

Quotient of Unsigned by Power of 2

- \(u \gg k \) gives \(\lfloor u / 2^k \rfloor \)
- Uses logical shift

Operands:

\[\begin{array}{c}
\frac{u}{2^k} \\
\end{array} \begin{array}{c}
0 \ldots 0 \bigg| 1 \bigg| 0 \ldots 0 \bigg| 0 \bigg| 0 \\
\end{array} \]

Division:

\[u / 2^k \]

Result:

\[\lfloor u / 2^k \rfloor \]

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>15213</td>
<td>15213</td>
<td>3B 6D</td>
</tr>
<tr>
<td>(x \gg 1)</td>
<td>7606.5</td>
<td>7606</td>
<td>1D B6</td>
</tr>
<tr>
<td>(x \gg 4)</td>
<td>950.8125</td>
<td>950</td>
<td>03 B6</td>
</tr>
<tr>
<td>(x \gg 8)</td>
<td>59.4257813</td>
<td>59</td>
<td>00 3B</td>
</tr>
</tbody>
</table>

00111011 01101101 00011101 10110110 00000011 10110110 00000000 00111011
Compiled Unsigned Division Code

C Function

```c
unsigned udiv8(unsigned x)
{
    return x/8;
}
```

Compiled Arithmetic Operations

```
shrl $3, %eax
```

Explanation

```
# Logical shift
return x >> 3;
```

- Uses logical shift for unsigned
- For Java Users
 - Logical shift written as >>>
Signed Power-of-2 Divide with Shift

- **Quotient of Signed by Power of 2**
 - \(x \gg k \) gives \(\lfloor x / 2^k \rfloor \)
 - Uses arithmetic shift
 - Rounds wrong direction when \(u < 0 \)

Table

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>(y >> 1)</td>
<td>-7606.5</td>
<td>E2 49</td>
<td>11100010 01001001</td>
</tr>
<tr>
<td>(y >> 4)</td>
<td>-950.8125</td>
<td>FC 49</td>
<td>11111100 01001001</td>
</tr>
<tr>
<td>(y >> 8)</td>
<td>-59.4257813</td>
<td>FF C4</td>
<td>11111111 11000100</td>
</tr>
</tbody>
</table>
Correct Power-of-2 Divide

Quotient of Negative Number by Power of 2
- Want \(\lceil \frac{x}{2^k} \rceil \) (Round Toward 0)
- Compute as \(\lfloor \frac{x+2^k-1}{2^k} \rfloor \)
 - In C: \((x + (1<<k) - 1) >> k\)
- Biases dividend toward 0

Case 1: No rounding

Dividend:

\[
\begin{array}{c}
\text{No rounding}
\end{array}
\]

Divisor:

\[
\begin{array}{c}
\text{No rounding}
\end{array}
\]

Biasing has no effect
Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Dividend: \(\frac{x}{2^k} \) \(\frac{\text{Dividend:}}{\text{Divisor:}} \)

\[\begin{array}{c}
\frac{\text{Dividend:}}{\text{Divisor:}} \frac{x}{2^k} \frac{\text{Dividend:}}{\text{Divisor:}} \frac{x}{2^k} \\
\end{array} \]

\[\begin{array}{c}
\frac{\text{Dividend:}}{\text{Divisor:}} \frac{x}{2^k} \frac{\text{Dividend:}}{\text{Divisor:}} \frac{x}{2^k} \\
\end{array} \]

\[\begin{array}{c}
\frac{\text{Dividend:}}{\text{Divisor:}} \frac{x}{2^k} \frac{\text{Dividend:}}{\text{Divisor:}} \frac{x}{2^k} \\
\end{array} \]

Biasing adds 1 to final result
Compiled Signed Division Code

C Function

```c
int idiv8(int x)
{
    return x/8;
}
```

Compiled Arithmetic Operations

```assembly
testl %eax, %eax
js    L4
L3:
    sarl $3, %eax
    ret
L4:
    addl $7, %eax
    jmp   L3
```

Explanation

```assembly
    if x < 0
        x += 7;
    # Arithmetic shift
    return x >> 3;
```

- Uses arithmetic shift for int
- For Java Users
 - Arith. shift written as >>
Arithmetic: Basic Rules

- **Addition:**
 - Unsigned/signed: Normal addition followed by truncate, same operation on bit level
 - Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2^w
 - Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w

- **Multiplication:**
 - Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
 - Unsigned: multiplication mod 2^w
 - Signed: modified multiplication mod 2^w (result in proper range)
Arithmetic: Basic Rules

- Unsigned ints, 2’s complement ints are isomorphic rings: isomorphism = casting

- Left shift
 - Unsigned/signed: multiplication by 2^k
 - Always logical shift

- Right shift
 - Unsigned: logical shift, div (division + round to zero) by 2^k
 - Signed: arithmetic shift
 - Positive numbers: div (division + round to zero) by 2^k
 - Negative numbers: div (division + round away from zero) by 2^k
 Use biasing to fix
Today: Integers

- Representation: unsigned and signed
- Conversion, casting
- Expanding, truncating
- Addition, negation, multiplication, shifting
- Summary
Properties of Unsigned Arithmetic

- **Unsigned Multiplication with Addition Forms**
 - **Commutative Ring**
 - Addition is commutative group
 - Closed under multiplication
 \[0 \leq \text{UMult}_w(u, v) \leq 2^w - 1 \]
 - Multiplication Commutative
 \[\text{UMult}_w(u, v) = \text{UMult}_w(v, u) \]
 - Multiplication is Associative
 \[\text{UMult}_w(t, \text{UMult}_w(u, v)) = \text{UMult}_w(\text{UMult}_w(t, u), v) \]
 - 1 is multiplicative identity
 \[\text{UMult}_w(u, 1) = u \]
 - Multiplication distributes over addition
 \[\text{UMult}_w(t, \text{UAdd}_w(u, v)) = \text{UAdd}_w(\text{UMult}_w(t, u), \text{UMult}_w(t, v)) \]
Properties of Two’s Comp. Arithmetic

- Isomorphic Algebras
 - Unsigned multiplication and addition
 - Truncating to w bits
 - Two’s complement multiplication and addition
 - Truncating to w bits

- Both Form Rings
 - Isomorphic to ring of integers mod 2^w

- Comparison to (Mathematical) Integer Arithmetic
 - Both are rings
 - Integers obey ordering properties, e.g.,
 \[u > 0 \implies u + v > v \]
 \[u > 0, \, v > 0 \implies u \cdot v > 0 \]
 - These properties are not obeyed by two’s comp. arithmetic
 \[TMax + 1 = TMin \]
 \[15213 \times 30426 = -10030 \] (16-bit words)
Why Should I Use Unsigned?

■ *Don’t Use Just Because Number Nonnegative*
 - Easy to make mistakes
    ```c
    unsigned i;
    for (i = cnt-2; i >= 0; i--)
      a[i] += a[i+1];
    ```
 - Can be very subtle
    ```c
    #define DELTA sizeof(int)
    int i;
    for (i = CNT; i-DELTA >= 0; i-= DELTA)
      . . .
    ```

■ *Do Use When Performing Modular Arithmetic*
 - Multiprecision arithmetic

■ *Do Use When Using Bits to Represent Sets*
 - Logical right shift, no sign extension
Integer C Puzzles

• \(x < 0 \) \(\Rightarrow \) \((x \times 2) < 0\)
• \(u_x \geq 0 \)
• \(x \& 7 == 7 \) \(\Rightarrow \) \((x \ll 30) < 0\)
• \(u_x > -1 \)
• \(x > y \) \(\Rightarrow \) \(-x < -y\)
• \(x \times x \geq 0 \)
• \(x > 0 \&\& y > 0 \) \(\Rightarrow \) \(x + y > 0\)
• \(x \geq 0 \)
• \(x \leq 0 \)
• \((x\oplus x)\ll 31 == -1 \)
• \(u_x \ll 3 == u_x/8 \)
• \(x \ll 3 == x/8 \)
• \(x \& (x-1) != 0 \)

Initialization

```c
int x = foo();
int y = bar();
unsigned ux = x;
unsigned uy = y;
```