15-213/18-243, Fall 2010
Lab Assignment L5: ProcLab
Assigned: Tuesday Oct. 12
Due: Tuesday, Oct. 19, 11:59PM
Last Possible Time to Turn in: Friday, Oct. 22, 11.59PM

Logistics

This is an individual project. All handins are electronic.
Please contact the 15-213 staff li$6¢ 213- st af f @s. cnu. edu) for any questions.

Overview

This lab tests your understanding of process control antbsigandling. You will be asked to use most of
the system calls in the following list to complete this laled@nding on your implementation, some of them
might not be used, but nonetheless, you should learn howetallisf them, as they might appear in exam
guestions. Examining the man pages is a good way to start.

» Creating and running processdor k, exec variants,exi t
» Synchronizing with childrenwai t , wai t pi d
» Macros for inspecting exit status: WIFEXITED, WEXITSTABJWIFSTOPPED, etc

 Signal handlingsi gnal , si gacti on,si gsuspend,si gpr ocnask

Downloading the assignment

Your lab materials are contained in a Unix tar file caljgdoc| ab- handout . t ar. gz, which you can
download from Autolab. After logging in to Autolab at

http://autol ab. cs. crmu. edu

you can retrieve thpr ocl ab- handout . t ar . gz file by selecting “Proclab - Download Lab Materials”
and then hitting the “Save File” button.

Start by copyingpr ocl ab- handout . t ar. gz to a protected directory in which you plan to do your
work. Then run the command ar zxvf procl ab-handout . tar. gz”. This will create a directory
calledpr ocl ab- handout that contains the following files (some of them are generbietiak e):

* puzzl es. c: File in which you should write your code.

e dri ver. a: Archive of driver object files that will be linked withuzzl es. o to produce the driver
binary

» Makef il e: Used bymake to generate the driver binary.
» dri ver: Aprogram you can use to evaluate your work. Tyyeek e to build this binary.

» deci pher: A helper program for theleci pher puzzle.

READNME: A help file that describes the contents of the handout tarbal

To compile your code and build the driver:

[i nux> nmake cl ean
i nux> make

To run the driver program to evaluate your work:
[inux> ./driver

The driver has an optional commandline argument that caspenific tests. For example, if you specify
[inux> ./driver -t 03456

then the driver will run tests only for puzzles 0, 3, 4, 5 andN6te that there mustot be any spaces between
the numbers. If you omit the option, then the driver will run all of the tests by default

The driver can submit an unofficial score to the class sc@ebd and only if you run all the tests. The
latest score sent to the scoreboard will overwrite any previones. Submission of unofficial scores will be
done automatically by the driver and there is no option taldis this behavior.

IMPORTANT: To submit your work to get aofficial score, please uploguuzzl es. ¢ to Autolab. As
you know, the driver program can only submit amofficial score to the class scoreboard, and an unofficial
score willnot be counted towards your grade.

WARNING : Do not let the Windows WinZip program open up yaurar . gz file (many Web browsers
are set to do this automatically). Instead, save the file tw }&S directory and use the Linuxar program
to extract the files. In general, for this class you should ERWse any platform other than Linux to modify
your files, doing so can cause loss of data (and important jvork

Puzzle O: timer

Congratulations! You're one of the promising candidate®mitihe 213 staff think could stop Dr. Evil from
releasing his newly developed virus that is so potent thaiuld bring down the entire Internet. Before the
staff can assign you this honorable task, they have deca@giy¢ you one last challenge to help you prove
your mettle. If you can impress them, they will let you movetoryour first mission.

Your Task

Your job for this puzzle is to complete the functioget s in puzzl es. c. Thet get s function is a
version of the 0 get s function that times out if the user doesn’t enter an inpug byuickly enough.

ssize_t tgets(char* buf, int buf_size, int tineout_secs)

This function reads in at most one less tharf _si ze characters from stdin and stores them into the buffer
pointed to bybuf . Reading stops after an EOF or a newlina), If a newline is read, it is stored into
the buffer. A NULL character\(Q) is stored after the last character in the buffer. If the da#s to type

an input line withint i meout _secs seconds, thehget s times out, returning to the caller with a value
of O to indicate that the timeout occurred. Otherwise it mesuthe length of the input string, excluding the
terminating NULL character.

To solve this puzzle you will need to modify thget s function and write your own SIGALRM handler. To
help you, we have provided you with two functionginzzl es. c¢ calledmyget s andset _al ar mhandl er.

Thenyget s function behaves likéget s, but if it receives any signal while running, it will retural and
seter r no to EINTR. In this case, you must make sure that the receiggthkis really SIGALRM and not
any other signal, because it is the SIGALRM signal that iatdis that the timeout has occurred.

In addition to modifying theé get s function, you will need to write a SIGALRM handler. Teet _al ar mhandl er
function installs your SIGALRM signal handler and returhe tddress (a function pointer) of the previous
handler, which you can use later to restore the original feand

Notes

* You should write exactly two functions: the SIGALRM handénd thet get s function.
* You must useryget s to read a line from stdin.
» Beforet get s returns, you must restore the original alarm signal hanifier you have overridden.

* In Linux, slow system calls are automatically restarte@rathey are interrupted by signals. However,
we do not want this behavior to happen fayet s, otherwise the timeout feature will not work. For-
tunately, the staff has writteset _al ar mhandl er such that system calls witiot be automatically
restarted when SIGALRM is received. The details can be fonrset _al ar mhandl er 's code.

* You must use the SIGALRM signal to implement the timeoutdea You can use a global variable
to help you determine whether the signal that wokeet s up is really SIGALRM.

3

» The exact specification ¢fget s can be found ipuzzl es. c. You may assume that the caller will
not pass in invalid parameters taet s.

Puzzle 1: racer

We have been intercepting a stream of characters from terdift processes that Dr. Evil has sent, but we
aren't sure what they mean. Your job is to synchronize thegsses such that both strings can be extracted.
We know that one string is printed (one character at a timanfthe parent process, and each character
in the other string is printed when a child exits. Howevelyame of these gets printed, based on which
process acted first.

In other words, each time Dr. Evil's program cdller k, if the parent runs first, then a character from string
2 will be printed. But if the child exits first, then a charadi®m string 1 will be printed instead. If you are
still confused, try running Puzzle 1 a few times and look atabitput.

In both races, the “child” letter is actually printed frometisigchldhandler in the parent, so it only gets
printed if the parent receives a SIGCHLD before running.

Note: The driver will not detect anything that your code prints tdaait. Any call topri nt f or some
variant you make while testing should be deleted before ssgiam.

Race 1

For the first race, you must complete the functiacer 1 (which is invoked in the parent just after the call
to f or k) such that the child always runs before the parent printgterlelhis prints all of string 1 and none
of string 2.

More explicitly, the code for race 1 looks something likesthi

for(i=0; i<STRLEN; i++){
pid = fork();
if (pid == 0)
exit(0);
el se racer1(pid);

}

Race 2

For the second race, you are given two template functisasup r ace2 (which is called beford or k),
andr acer 2 (which is called aftef or k, in the same place asacer 1). You should edit these to block
the SIGCHLD from being received until after the parent'sdetias been printed. This prints all of string 2
and none of string 1.

More explicitly, the code for race 2 looks something likesthi

for(i=0; i<STRLEN; i++){
setup_race2();
pid = fork();
if (pid == 0)

exit(0);
el se racer2(pid);

}

Notes

» No global variables allowed.

Puzzle 2: decipher

Now that you have gained access to Dr. Evil's system, youdaecto peek at the contents of some of his
files. None of his files are encrypted except for one particfila that contains several lines of encrypted
words. Fortunately, your hacker’s toolkit comes with a haheélperdeci pher program that can break
any encryption.

Your Task

Your job here is to complete thaeci pher function inpuzzl es. c. Thedeci pher function takes in
an array of pointers, where each pointer refers to a striag ighan encrypted word. The last element in
the array is @\NULL pointer that marks the end of the array. The goal is to getnei pher program
(don’t confuse it with the function) to decrypt the array obnas passed to theeci pher function. The
deci pher program takes an encrypted word as a command line argumednprarts out the decrypted
word on stdout. For example:

['i nux> ./ deci pher ruyTbPN

You should be able to see the decrypted word. Of course, ifgpeelithe program a non-encrypted word,
it will output garbage. Due to some technical constrairtte,deci pher program can only accept one
encrypted word at a time, so you have to rupricefor each encrypted word. Your job is to perform this
decrypting process by using thfi@r k andexec functions to load and run theéeci pher program, once
for each encrypted word in the input array.

You will also need to ensure that the decrypted words arggatiout in thesame orderas the encrypted
words are stored in the array.

Important: You do not have to extract the output printed out by dieei pher program. The driver will
have a way to capture this output. All you have to do is to rindci pher program several times to
decrypt the array of encrypted words.

Notes

* You can use any variant of thexec function, such agxecl e.
* You must make use dfor k and eithemai t orwai t pi d in your solution.
» Write all of your code in theleci pher function.

» No global variables allowed.

Puzzle 3: counter

After rummaging through his files, you couldn’t find the virtit you're tasked to destroy. Instead, you
came across an image file that illustrates the hierarchyarfgases running in Dr. Evil's computer system.
It looks so interesting that you suddenly forget all aboutirymission and decide to spend some time
investigating this tree of processes.

Here is Dr. Evil's digital organization structure, a.k.ag@ of Evil:

Level O: Dr. Root of Evil
/ | \
/ | \
/ | \
Level 1: M ni on-1 Mnion-2 \...other mnions...
/ \ \
/ \ \
Level 2: Assassin-1 Assassin-2 \...other assassins...
/ | \
Level

| I |\

| I | \
Level n: Wrker-1 VWorker-2 Worker-3 \...other workers...

As you can see, Dr. Evil has even named a process after himigelf must be some command and control
program that he uses to carry out his evil plans. Some otlugrepties you observe:

» Atlevel 0, "Dr. Root of Evil” is the root of this whole hierarchy and iak a number of different child
processes running under it.

» The lowest leveh consists of worker processes.

» Every Minion can have a different number of Assassins oreramall. Likewise, every Assassin can
have a different number of subordinate processes or nore at a

Hmmm, you wonder how many processes there are in total irdibital organization. Since the organiza-
tion is so huge, you decide to use a computer to count it for sathier than to count it manually.

Your Task

The goal here is to fill in theount er function inpuzzl es. ¢ so that it counts the total number of
children a process has in its subtree (including the proites). After a parent process has spawradid
of its child processes, it will cakount er with anumdi r ect chi | dr en parameter that specifies the
number ofdirect children the process has. Processes that don’t spawn any childrecedlit ount er (0) .
When it has completed, yowount er function should exit the process by calliexi t (n) , wheren

is the total number of children the current process has isutsiree, including itself. Processes with no
children should should cadixi t (1) .

For example, suppose that the Dr. Evil root process spawnsntoiprocesses. After spawning these
processes, the Dr. Evil process will calbunt er (5) . Eventually, the Dr. Evil root process should exit
with its exi t code set to the total number of processes in the entire tree.

Notes

* You should writeall of your code in the&eount er function.
» The total number of processes in the entire tree is alwasstiean 255.

» No global variables are allowed.

Puzzle 4: reaper

We've made much progress tracking down Dr. Evil's mainfraraed have narrowed it down to a few
locations. We sent some spies (aka 213-ninjas) to each sé tloeations, but Dr. Evil has such well-laid
traps that very few of them come back. This time, each spy lpasaess attached to them that reports back
to us how it died. This will allow us to discover what kind céprs Dr. Evil is setting so we can finally catch
him. Your job is to write a handler that will catch the signfitsm each spy and print to stdout how it died.

Your Task

Your task here is to fill in the eaper function inpuzzl es. c. A signal handler in the parent process (in
this case our driver program) calls yaueaper function each time the parent receives a SIGCHLD signal.
There are three different cases when this could happen:

1. The child callecexi t .
2. Receipt of a signal caused the child to terminate.

3. Receipt of a signal caused the child to stop (temporagly éxecution).

Each time your eaper function is invoked, it should ussai t pi d to reap all available zombie children,
extract their termination or stopped status, and print &t to stdout. You will need to make use of the
opt i ons argument torai t pi d. Since this is in a signal handler, you should ssd e pri nt f instead
of pri ntf (Discussed in Lecture 14 on signals and available onlinm fitee course schedule’s web page).

In particular, if a child exited normally, you should call:
safeprintf("Job (%) exited with status %d\n", pid, status);

If the child terminated as a result of receiving a signal, gbould call
safeprintf("Job (%) term nated by signal %l\n", pid, sig);

If the child stopped as a result of receiving a signal, yowshaoall
safeprintf("Job (%) stopped by signal %\n", pid, sig);

In these casegi d is the pid of the child that was reapext, at us is its exit status, andi g is the number
of the signal that killed/stopped it.

Note: If you print something that does not match the above fornhatdriver will not give you credit.

10

Puzzle 5: shower

So the last spy who survived has somehow managed to captukeviDs mainframe and destroy the virus,
but Dr. Evil is still on the loose. A few days later, the 213fstatercepted some message signals and after
much investigation they found out that he was plotting soewe nefarious deed. When he realized that his
signals were being intercepted, Dr. Evil decided to senthtbenstantly in a seemingly random order, like
asignal shower, so that it would be much more difficult to figure out the messhigiden amongst those
signals. As your final task, you are required to interceps¢hsignals and make sense out of them.

Your Task

Your process will be bombarded with numerous instanceseofdiiowing 5 signals: SIGALRM, SIGUSR1,
SIGUSR2, SIGCONT, and SIGCHLD. They will be sent randomlyl @ach time a signal is received, a
unique word associated with the signal will be printed ouhscreen. The goal is to get the words printed
out in thecorrect order so that you can see the message.

There are two functions ipuzzl es. c that you will need to completeshower _set up andshower _r un.

Inshower _set up, you should install a signal handler to catch all 5 of the aignAs soon ashower _set up
returns, the signals will start to be received, so you wilhtved blockall signals before returning. Each
time your signal handler catches a signal, your handlerlgheall thesi gnal _r ecei ved function with
the number of the signal that it received. Calliggnal _r ecei ved(k) will cause the word associated
with signalk to be printed to stdout.

In shower _r un, you should block the appropriate signals in such a way titebtword message from Dr.
Evil is printed to stdout. The idea is to block all signals epicfor the signal associated with the first word
of the message, wait for your handler to catch it, then bldicg&ignals except for the signal associated with
the second word of the message, wait for your handler to ¢attisignal, and so on.

Notes

» Do not simply call si gnal r ecei ved five times to get the message printed out. You can
only call it in your signal handlers, not ishower _set up nor shower _r un function. Also, you
cannot call your signal handler directly. You have to letiysignal handlers be triggered by the actual
receival of signals.

* You are allowed to write other helper functions.
* Global variables are allowed.
* You might need to caléi gpr ocrmask multiple times to get the correct message printed out.

* You will need to figure out the word associated with eachalign

11

Style Requirements

Make sure you check fall possible system calls failure. You do not have to checlafar mfailing
since it does not report any error condition. So you can assalnar mwill always succeed. As a
reminder, do not assunmexec will always succeed.

When an error is detected, print an error message and hdrelkrror appropriately. You can choose
to exit or simply returnDo not silently ignore errors. Exiting will cause the driver to terminate and
returning will cause the current test to fail. But since esrare rare (unless you are using the system
functions incorrectly), you do not have to worry about théoguading process being affected. If you
have an error in your official submission, just try submitegain.

Int get s, however, you must return -1 when an error occurs.

We are not providingsapp. h, ¢, so please do not cdflor k, Exec and etc. (those that start with
a capital letter)

In puzzle shower, if you find that your code is very repedfiplease shorten your code by writing
other helper functions.

Write a brief comment in the function headers for the fumes you have to complete. In general,
please comment your code.

Indent all your code consistently except &t _al ar mhandl er

It is a good practice to put global variables(if any) and prmytotypes you are declaring at the top of
thepuzzl es. c file. For those using the old version of theizzl es. c file, please move the fol-
lowing prototypes to the top of the filezoi d print ALetter(), void safeprintf(),
voi d si gnal _recei ved() The updated version of thruzzl es. c file already have those pro-
totypes at the top of the file.

The style guideline on the class website , http://wwwrostedu/~213/codeStyle.html , applies as
well.

Evaluation

This section describes how your work is evaluated. The fidte for this lab is 100 points:

Puzzle 0 - tiner: 15 Points
Puzzle 1 racer: 10 Points
Puzzle 2 - decipher: 10 Points
Puzzle 3 counter: 15 Points
Puzzl e 4 reaper: 20 Points
Puzzle 5 shower : 20 Points
Style: 10 Points

12

There is no partial credit for a puzzle, that is, you eitherfgl credit or no credit at all for a puzzle.

If one or more rules is violated for a puzzle, we reserve the ght to take away the credit for that
puzzle.

The style points are given based on the style requiremerdesasibed above as well as the quality of your
code.

13

