
15-213/18-243, Fall 2010
Lab Assignment L5: ProcLab
Assigned: Tuesday Oct. 12

Due: Tuesday, Oct. 19, 11:59PM
Last Possible Time to Turn in: Friday, Oct. 22, 11:59PM

Logistics

This is an individual project. All handins are electronic.

Please contact the 15-213 staff list (15-213-staff@cs.cmu.edu) for any questions.

Overview

This lab tests your understanding of process control and signal handling. You will be asked to use most of
the system calls in the following list to complete this lab. Depending on your implementation, some of them
might not be used, but nonetheless, you should learn how to use all of them, as they might appear in exam
questions. Examining the man pages is a good way to start.

• Creating and running processes:fork, exec variants,exit

• Synchronizing with children:wait, waitpid

• Macros for inspecting exit status: WIFEXITED, WEXITSTATUS, WIFSTOPPED, etc

• Signal handling:signal, sigaction,sigsuspend,sigprocmask

Downloading the assignment

Your lab materials are contained in a Unix tar file calledproclab-handout.tar.gz, which you can
download from Autolab. After logging in to Autolab at

http://autolab.cs.cmu.edu

1

you can retrieve theproclab-handout.tar.gz file by selecting “Proclab - Download Lab Materials”
and then hitting the “Save File” button.

Start by copyingproclab-handout.tar.gz to a protected directory in which you plan to do your
work. Then run the command “tar zxvf proclab-handout.tar.gz”. This will create a directory
calledproclab-handout that contains the following files (some of them are generatedby make):

• puzzles.c: File in which you should write your code.

• driver.a: Archive of driver object files that will be linked withpuzzles.o to produce the driver
binary

• Makefile: Used bymake to generate the driver binary.

• driver: A program you can use to evaluate your work. Typemake to build this binary.

• decipher: A helper program for thedecipher puzzle.

• README: A help file that describes the contents of the handout tarball.

To compile your code and build the driver:

linux> make clean
linux> make

To run the driver program to evaluate your work:

linux> ./driver

The driver has an optional commandline argument that can runspecific tests. For example, if you specify

linux> ./driver -t 03456

then the driver will run tests only for puzzles 0, 3, 4, 5 and 6.Note that there mustnot be any spaces between
the numbers. If you omit the⁀-t option, then the driver will run all of the tests by default.

The driver can submit an unofficial score to the class scoreboard if and only if you run all the tests. The
latest score sent to the scoreboard will overwrite any previous ones. Submission of unofficial scores will be
done automatically by the driver and there is no option to disable this behavior.

IMPORTANT: To submit your work to get anofficial score, please uploadpuzzles.c to Autolab. As
you know, the driver program can only submit anunofficial score to the class scoreboard, and an unofficial
score willnot be counted towards your grade.

WARNING : Do not let the Windows WinZip program open up your.tar.gz file (many Web browsers
are set to do this automatically). Instead, save the file to your AFS directory and use the Linuxtar program
to extract the files. In general, for this class you should NEVER use any platform other than Linux to modify
your files, doing so can cause loss of data (and important work!).

2

Puzzle 0: timer

Congratulations! You’re one of the promising candidates whom the 213 staff think could stop Dr. Evil from
releasing his newly developed virus that is so potent that itcould bring down the entire Internet. Before the
staff can assign you this honorable task, they have decided to give you one last challenge to help you prove
your mettle. If you can impress them, they will let you move onto your first mission.

Your Task

Your job for this puzzle is to complete the functiontgets in puzzles.c. Thetgets function is a
version of the Cfgets function that times out if the user doesn’t enter an input line quickly enough.

ssize_t tgets(char* buf, int buf_size, int timeout_secs)

This function reads in at most one less thanbuf size characters from stdin and stores them into the buffer
pointed to bybuf. Reading stops after an EOF or a newline (\n). If a newline is read, it is stored into
the buffer. A NULL character (\0) is stored after the last character in the buffer. If the userfails to type
an input line withintimeout secs seconds, thentgets times out, returning to the caller with a value
of 0 to indicate that the timeout occurred. Otherwise it returns the length of the input string, excluding the
terminating NULL character.

To solve this puzzle you will need to modify thetgets function and write your own SIGALRM handler. To
help you, we have provided you with two functions inpuzzles.ccalledmygetsandset alarm handler.

Themygets function behaves likefgets, but if it receives any signal while running, it will return−1 and
seterrno to EINTR. In this case, you must make sure that the received signal is really SIGALRM and not
any other signal, because it is the SIGALRM signal that indicates that the timeout has occurred.

In addition to modifying thetgets function, you will need to write a SIGALRM handler. Theset alarm handler
function installs your SIGALRM signal handler and returns the address (a function pointer) of the previous
handler, which you can use later to restore the original handler.

Notes

• You should write exactly two functions: the SIGALRM handler and thetgets function.

• You must usemygets to read a line from stdin.

• Beforetgets returns, you must restore the original alarm signal handlerthat you have overridden.

• In Linux, slow system calls are automatically restarted after they are interrupted by signals. However,
we do not want this behavior to happen fortgets, otherwise the timeout feature will not work. For-
tunately, the staff has writtenset alarm handler such that system calls willnot be automatically
restarted when SIGALRM is received. The details can be foundin set alarm handler’s code.

• You must use the SIGALRM signal to implement the timeout feature. You can use a global variable
to help you determine whether the signal that wokemygets up is really SIGALRM.

3

• The exact specification oftgets can be found inpuzzles.c. You may assume that the caller will
not pass in invalid parameters totgets.

4

Puzzle 1: racer

We have been intercepting a stream of characters from two different processes that Dr. Evil has sent, but we
aren’t sure what they mean. Your job is to synchronize the processes such that both strings can be extracted.
We know that one string is printed (one character at a time) from the parent process, and each character
in the other string is printed when a child exits. However, only one of these gets printed, based on which
process acted first.

In other words, each time Dr. Evil’s program callsfork, if the parent runs first, then a character from string
2 will be printed. But if the child exits first, then a character from string 1 will be printed instead. If you are
still confused, try running Puzzle 1 a few times and look at the output.

In both races, the “child” letter is actually printed from the sigchldhandler in the parent, so it only gets
printed if the parent receives a SIGCHLD before running.

Note: The driver will not detect anything that your code prints to stdout. Any call toprintf or some
variant you make while testing should be deleted before submission.

Race 1

For the first race, you must complete the functionracer1 (which is invoked in the parent just after the call
to fork) such that the child always runs before the parent prints a letter. This prints all of string 1 and none
of string 2.

More explicitly, the code for race 1 looks something like this:

for(i=0; i<STRLEN; i++){
pid = fork();
if (pid == 0)
exit(0);

else racer1(pid);
}

Race 2

For the second race, you are given two template functions,setup race2 (which is called beforefork),
andracer2 (which is called afterfork, in the same place asracer1). You should edit these to block
the SIGCHLD from being received until after the parent’s letter has been printed. This prints all of string 2
and none of string 1.

More explicitly, the code for race 2 looks something like this:

for(i=0; i<STRLEN; i++){
setup_race2();
pid = fork();
if (pid == 0)

5

exit(0);
else racer2(pid);

}

Notes

• No global variables allowed.

6

Puzzle 2: decipher

Now that you have gained access to Dr. Evil’s system, you decided to peek at the contents of some of his
files. None of his files are encrypted except for one particular file that contains several lines of encrypted
words. Fortunately, your hacker’s toolkit comes with a handy helperdecipher program that can break
any encryption.

Your Task

Your job here is to complete thedecipher function inpuzzles.c. Thedecipher function takes in
an array of pointers, where each pointer refers to a string that is an encrypted word. The last element in
the array is aNULL pointer that marks the end of the array. The goal is to get thedecipher program
(don’t confuse it with the function) to decrypt the array of words passed to thedecipher function. The
decipher program takes an encrypted word as a command line argument and prints out the decrypted
word on stdout. For example:

linux> ./decipher ruyTbPN

You should be able to see the decrypted word. Of course, if yougive the program a non-encrypted word,
it will output garbage. Due to some technical constraints, the decipher program can only accept one
encrypted word at a time, so you have to run itoncefor each encrypted word. Your job is to perform this
decrypting process by using thefork andexec functions to load and run thedecipher program, once
for each encrypted word in the input array.

You will also need to ensure that the decrypted words are printed out in thesame orderas the encrypted
words are stored in the array.

Important: You do not have to extract the output printed out by thedecipher program. The driver will
have a way to capture this output. All you have to do is to run the decipher program several times to
decrypt the array of encrypted words.

Notes

• You can use any variant of theexec function, such asexecle.

• You must make use offork and eitherwait or waitpid in your solution.

• Write all of your code in thedecipher function.

• No global variables allowed.

7

Puzzle 3: counter

After rummaging through his files, you couldn’t find the virusthat you’re tasked to destroy. Instead, you
came across an image file that illustrates the hierarchy of processes running in Dr. Evil’s computer system.
It looks so interesting that you suddenly forget all about your mission and decide to spend some time
investigating this tree of processes.

Here is Dr. Evil’s digital organization structure, a.k.a, Tree of Evil:

Level 0: Dr. Root of Evil
/ | \
/ | \

/ | \
Level 1: Minion-1 Minion-2 \...other minions...

/ \ ___
/ \ \

Level 2: Assassin-1 Assassin-2 \...other assassins...
/ | \

Level
| | | __
| | | \

Level n: Worker-1 Worker-2 Worker-3 \...other workers...

As you can see, Dr. Evil has even named a process after himself. That must be some command and control
program that he uses to carry out his evil plans. Some other properties you observe:

• At level 0, ”Dr. Root of Evil” is the root of this whole hierarchy and it has a number of different child
processes running under it.

• The lowest leveln consists of worker processes.

• Every Minion can have a different number of Assassins or none at all. Likewise, every Assassin can
have a different number of subordinate processes or none at all.

Hmmm, you wonder how many processes there are in total in thisdigital organization. Since the organiza-
tion is so huge, you decide to use a computer to count it for you, rather than to count it manually.

Your Task

The goal here is to fill in thecounter function in puzzles.c so that it counts the total number of
children a process has in its subtree (including the processitself). After a parent process has spawnedall
of its child processes, it will callcounter with anum direct children parameter that specifies the
number ofdirect children the process has. Processes that don’t spawn any children will call counter(0).
When it has completed, yourcounter function should exit the process by callingexit(n), wheren

8

is the total number of children the current process has in itssubtree, including itself. Processes with no
children should should callexit(1).

For example, suppose that the Dr. Evil root process spawns 5 Minion processes. After spawning these
processes, the Dr. Evil process will callcounter(5). Eventually, the Dr. Evil root process should exit
with its exit code set to the total number of processes in the entire tree.

Notes

• You should writeall of your code in thecounter function.

• The total number of processes in the entire tree is always less than 255.

• No global variables are allowed.

9

Puzzle 4: reaper

We’ve made much progress tracking down Dr. Evil’s mainframe, and have narrowed it down to a few
locations. We sent some spies (aka 213-ninjas) to each of these locations, but Dr. Evil has such well-laid
traps that very few of them come back. This time, each spy has aprocess attached to them that reports back
to us how it died. This will allow us to discover what kind of traps Dr. Evil is setting so we can finally catch
him. Your job is to write a handler that will catch the signalsfrom each spy and print to stdout how it died.

Your Task

Your task here is to fill in thereaper function inpuzzles.c. A signal handler in the parent process (in
this case our driver program) calls yourreaper function each time the parent receives a SIGCHLD signal.
There are three different cases when this could happen:

1. The child calledexit.

2. Receipt of a signal caused the child to terminate.

3. Receipt of a signal caused the child to stop (temporarily halt execution).

Each time yourreaper function is invoked, it should usewaitpid to reap all available zombie children,
extract their termination or stopped status, and print the result to stdout. You will need to make use of the
options argument towaitpid. Since this is in a signal handler, you should usesafe printf instead
of printf (Discussed in Lecture 14 on signals and available online from the course schedule’s web page).

In particular, if a child exited normally, you should call:
safe printf("Job (%d) exited with status %d\n", pid, status);

If the child terminated as a result of receiving a signal, youshould call
safe printf("Job (%d) terminated by signal %d\n", pid, sig);

If the child stopped as a result of receiving a signal, you should call
safe printf("Job (%d) stopped by signal %d\n", pid, sig);

In these cases,pid is the pid of the child that was reaped,status is its exit status, andsig is the number
of the signal that killed/stopped it.

Note: If you print something that does not match the above format, the driver will not give you credit.

10

Puzzle 5: shower

So the last spy who survived has somehow managed to capture Dr. Evil’s mainframe and destroy the virus,
but Dr. Evil is still on the loose. A few days later, the 213 staff intercepted some message signals and after
much investigation they found out that he was plotting some new nefarious deed. When he realized that his
signals were being intercepted, Dr. Evil decided to send them constantly in a seemingly random order, like
a signal shower, so that it would be much more difficult to figure out the message hidden amongst those
signals. As your final task, you are required to intercept those signals and make sense out of them.

Your Task

Your process will be bombarded with numerous instances of the following 5 signals: SIGALRM, SIGUSR1,
SIGUSR2, SIGCONT, and SIGCHLD. They will be sent randomly, and each time a signal is received, a
unique word associated with the signal will be printed out tothe screen. The goal is to get the words printed
out in thecorrect order so that you can see the message.

There are two functions inpuzzles.c that you will need to complete:shower setup andshower run.

In shower setup, you should install a signal handler to catch all 5 of the signals. As soon asshower setup
returns, the signals will start to be received, so you will want to blockall signals before returning. Each
time your signal handler catches a signal, your handler should call thesignal received function with
the number of the signal that it received. Callingsignal received(k)will cause the word associated
with signalk to be printed to stdout.

In shower run, you should block the appropriate signals in such a way that the 5-word message from Dr.
Evil is printed to stdout. The idea is to block all signals except for the signal associated with the first word
of the message, wait for your handler to catch it, then block all signals except for the signal associated with
the second word of the message, wait for your handler to catchthat signal, and so on.

Notes

• Do not simply call signal received five times to get the message printed out. You can
only call it in your signal handlers, not inshower setup nor shower run function. Also, you
cannot call your signal handler directly. You have to let your signal handlers be triggered by the actual
receival of signals.

• You are allowed to write other helper functions.

• Global variables are allowed.

• You might need to callsigprocmaskmultiple times to get the correct message printed out.

• You will need to figure out the word associated with each signal.

11

Style Requirements

• Make sure you check forall possible system calls failure. You do not have to check foralarm failing
since it does not report any error condition. So you can assume alarm will always succeed. As a
reminder, do not assumeexec will always succeed.

• When an error is detected, print an error message and handlethe error appropriately. You can choose
to exit or simply return.Do not silently ignore errors. Exiting will cause the driver to terminate and
returning will cause the current test to fail. But since errors are rare (unless you are using the system
functions incorrectly), you do not have to worry about the autograding process being affected. If you
have an error in your official submission, just try submitting again.

• In tgets, however, you must return -1 when an error occurs.

• We are not providingcsapp.h,c, so please do not callFork, Exec and etc. (those that start with
a capital letter)

• In puzzle shower, if you find that your code is very repetitive, please shorten your code by writing
other helper functions.

• Write a brief comment in the function headers for the functions you have to complete. In general,
please comment your code.

• Indent all your code consistently except forset alarm handler

• It is a good practice to put global variables(if any) and anyprototypes you are declaring at the top of
thepuzzles.c file. For those using the old version of thepuzzles.c file, please move the fol-
lowing prototypes to the top of the file:void printALetter(), void safe printf(),
void signal received()The updated version of thepuzzles.c file already have those pro-
totypes at the top of the file.

• The style guideline on the class website , http://www.cs.cmu.edu/~213/codeStyle.html , applies as
well.

Evaluation

This section describes how your work is evaluated. The full score for this lab is 100 points:

Puzzle 0 - timer: 15 Points
Puzzle 1 - racer: 10 Points
Puzzle 2 - decipher: 10 Points
Puzzle 3 - counter: 15 Points
Puzzle 4 - reaper: 20 Points
Puzzle 5 - shower: 20 Points
Style: 10 Points

12

There is no partial credit for a puzzle, that is, you either get full credit or no credit at all for a puzzle.

If one or more rules is violated for a puzzle, we reserve the right to take away the credit for that
puzzle.

The style points are given based on the style requirements asdescribed above as well as the quality of your
code.

13

