15-213, Fall 2010
Malloc Lab: Writing a Dynamic Storage Allocator
Assigned: Thursday, October 21
Due: Thursday, November 4, 11:59pm
Last Possible Time to Turn In: Sunday, November 7, 11:59pm

1 Introduction

In this lab you will be writing a dynamic storage allocator f0 programs; that is, your own version of
themal | oc,free, real |l oc, andcal | oc functions. You are encouraged to explore the design space
creatively and implement an allocator that is correct, &ffitt and fast.

2 Warning

Bugs can be especially pernicious and difficult to track dowemn allocator, and you may easily spend more
time debugging than coding in this assignment. &englyencourage you to start early.

3 Logistics

This is an individual project. You should do this lab on onéhef shark machines.

4 Hand Out Instructions

Start by downloadingral | ocl ab- handout . t ar from Autolab to a protected directory in which you
plan to do your work. Then give the commandr xvf mal | ocl ab- handout . t ar. This will cause
a number of files to be unpacked into the directory.

The only file you will be modifying and turning inrsn ¢, which contains your solutioithendr i ver . c
program is a driver program that allows you to locally evédute performance of your solution in the same
way that Autolab will evaluate your final submission. Use tbenmandrake to generate the driver code
and run it with the command/ ndri ver .

5 How to Work on the Lab

Your dynamic storage allocator will consist of the followifiunctions, which are declared mm h and
defined innm c:

i nt mm_init(void);

void *mal | oc(size_t size);

void free(void *ptr);

void *realloc(void *ptr, size_t size);
void *calloc (size_t nnenb, size t size);
void mm checkheap(void);

The nm ¢ file we have given you implements everything correctly buvelgt. In addition, there is an
example implicit list allocator described int your texttxoo

Because we are running on 64-bit machines, your allocatat tmeicoded accordingly, with one exception:
the size of the heap will never be greater than or equattdoytes. This doesotimply anything about the
location of the heap, but there is a neat optimization thatbmdone using this information. However, be
very, very careful if you decide to take advantage of thig.fddere are certain invalid optimizations that
will pass all the driver checks because of the limited ranigiictionality we can check in a reasonable
amount of time, so we will be manually looking over your codethese violations. If you do not understand
this paragraph, you should re-read the x86-64 section dfetkteand come to office hours with questions if
you are still unsure.

You may usemm ¢, mm nai ve. c, or the book’s example code as starting points for your awnc file.
Implement the functions (and possibly define other prigdtat i ¢ helper functions), so that they obey the
following semantics:

e Mmi ni t: Performs any necessary initializations, such as allogdhie initial heap area. The return
value should be -1 if there was a problem in performing th8ailization, O otherwise Do not call
memi ni t from this function!

Every time the driver executes a new trace, it resets youp ledahe empty heap by calling your
nmi ni t function.

e mal | oc: Thenal | oc routine returns a pointer to an allocated block payload deastsi ze
bytes. The entire allocated block should lie within the hesgion and should not overlap with any
other allocated chunk.

Since the standard C library i(bc) nal | oc always returns payload pointers that are aligned to 8
bytes, youmral | oc implementation should do likewise and always return 8-lajigned pointers.

e free: Thefree routine frees the block pointed to Ipt r. It returns nothing. This routine is
only guaranteed to work when the passed poinper () was returned by an earlier call tml | oc,
cal | oc,orreal | oc and has not yet been freefdt ee(NULL) has no effect.

e real l oc: Thereal | oc routine returns a pointer to an allocated region of at leaste bytes
with the following constraints:

— if ptr isNULL, the call is equivalent taal | oc(si ze) ;
— if si ze is equal to zero, the call is equivalentftoee(pt r) and should return NULL;

— if ptr is notNULL, it must have been returned by an earlier calirtd | oc orr eal | oc and
not yet have been freed. The callteal | oc takes an existing block of memory, pointed to
by pt r — theold block It then allocates a region of memory large enough to kolde bytes
and returns the address of this new block. Note that the addyethe new block might be
the same as the old block (perhaps there was free spacelsdteldt block and it could just be
extended, or the newi ze was smaller than the old size); or it might be different, dejieg
on your implementation, the amount of internal fragmentain the old block, and the size of
ther eal | oc request. If the call to eal | oc does not fail and the returned address is different
than the address passed in, the old block has been freed and stot be used, freed, or passed
tor eal | oc again.

The contents of the new block are the same as those of the oldblock, up to the minimum of

the old and new sizes. Everything else is uninitialized. &@mple, if the old block is 8 bytes
and the new block is 12 bytes, then the first 8 bytes of the newkldre identical to the first 8
bytes of the old block and the last 4 bytes are uninitialiZz&dhilarly, if the old block is 8 bytes

and the new block is 4 bytes, then the contents of the new laoekdentical to the first 4 bytes
of the old block.

e cal | oc: Allocates memory for an array afmenb elements ofsi ze bytes each and returns a
pointer to the allocated memory. The memory is set to zerorbakturning.

Note: Your cal | oc will not be graded on throughput or performance. A correct, smple im-
plementation will suffice.

e "Mmcheckheap: Themmcheckheap function scans the heap and checks it for consistency. This
function will be very useful in debugging youral | oc implementation. Someal | oc bugs are
very hard to debug using conventioradb techniques. The only effective technique for some of these
bugs is to use a heap consistency checker. When you encauinier, you can isolate it with repeated
calls to the consistency checker until you find the instarctihat corrupted your heap. Because of
the importance of the consistency checker, it will be gradégou ask a member of the course staff
for help, the first thing we will do is ask to see your checkhapetion, so please write this function
before coming to see us!

These semantics match the semantics of the correspohding routines (note thatmcheckheap does

not have a corresponding functionlim bc). Typeman nal | oc to the shell for complete documentation.

6 Support Routines

Thenmeni i b. ¢ package simulates the memory system for your dynamic meailmgator. You can invoke
the following functions imem i b. c:

e void »memsbrk(int incr): Expands the heap biyncr bytes, where ncr is a positive
non-zero integer, and returns a generic pointer to the fitg bf the newly allocated heap area. The

3

semantics are identical to the Unbr k function, except thatremsbr k accepts only a positive
non-zero integer argument.

e voi d *memheap| o(voi d) : Returns a generic pointer to the first byte in the heap.
e voi d *memheap_hi (voi d) : Returns a generic pointer to the last byte in the heap.
e size.t nemheapsi ze(voi d) : Returns the current size of the heap in bytes.

e sizet nmempagesi ze(voi d): Returns the system’s page size in bytes (4K on Linux systems

7 The Trace-driven Driver Program

The driver programdr i ver . c inthenal | ocl ab- handout . t ar distribution tests younrm c¢ pack-
age for correctness, space utilization, and throughpue driver program is controlled by a set wéce
filesthat are included in theal | ocl ab- handout . t ar distribution. Each trace file contains a sequence
of allocate and free directions that instruct the driverat gour mal | oc andf r ee routines in some se-
guence. The driver and the trace files are the same ones wesgillvhen we grade your handiimm ¢

file.

When the driver program is run, it will run each trace file I8dis: once to make sure your implementation
is correct, once to determine the space utilization, andmM@g to determine the performance.

The driverndr i ver . ¢ accepts the following command line arguments. The normataifon is to run it
with no arguments, but you may find it useful to use the arguseéaring development.

e -t <tracedir>: Look for the default trace files in directotyr acedi r instead of the default
directory defined irconfi g. h.

e -f <tracefil e>:Use one particularr acef i | e instead of the default set of tracefiles for test-
ing correctness and performance.

e -C <tracefil e>: Run a particulat r acef i | e exactly once, testing only for correctness. This
option is extremently useful if you want to print out debuggimessages.

e - h: Print a summary of the command line arguments.

e - | : Run and measurei bc mal | oc in addition to the studentsal | oc package. This is interest-
ing mainly to see how slow thei bc mal | oc package is.

e - V. Verbose output. Print additional diagnostic informatas each trace file is processed. Useful
during debugging for determining which trace file is causppgr malloc package to fail.

e -V <verbose | evel >: This optional feature lets you manually set your verbosellé a par-
ticular integer.

e -d <i>: Atdebug level 0, very little validity checking is done. B¢ useful if you are mostly done
but just tweaking performance.

At debug level 1, every array the driver allocates is filledhwiandom bits. When the array is freed
or reallocated, we check to make sure the bits have not besrgel. This is the default.

At debug level 2, every time any operation is done, all arergschecked. This is very slow but useful
to discover problems very quickly.

e - D: Equivalent to- d2.

e - s <s>: Time out afters seconds. The default is to never time out.

8 Programming Rules

e You should not change any of the interfacesrin h. However, we strongly encourage you to use
st at i ¢ helper functions immm ¢ to break up your code into small, easy-to-understand setgmen

e You should not invoke any external memory-managementagli#rary calls or system calls. The use
of thel i bc mal | oc,cal | oc,free,real | oc, sbrk, brk, or any other memory management
packages is strictly prohibited.

¢ You are not allowed to define any global data structures sadrrays, structs, trees, or lists in your
nm ¢ program. However, yoare allowed to declare global scalar variables such as intefleeds,
and pointers inmm c.

The reason for this restriction is that the driver cannotoact for such global variariables in its
memory utilization measure. If you need space for large datzctures, you can put them at the
beginning of the heap.

¢ You are not allowed to simply hand in the code for the allocafoom the CS:APP or K&R books. If
you do so, you will receive no credit.

However, we encourage you to study these examples and tbersedts starting points. For example,
you might modify the CS:APP code to use an explicit list witnstant-time coalescing. Or you
might modify the K&R code to use constant-time coalescing.y@u might use either one as the
basis for a segregated list allocator. Please remembegv@what your allocator must be for 64-bit
machines.

e It is okay to look at any descriptions of algorithms found fe textbook or elsewhere, but it it
acceptable to copy any coderddl | oc implementations found online or in other sources, except fo
the implicit list allocator described in your book or K&R.

e \We encourage you to study the trace files and optimize for tHeryour code must be correct on
every trace. The score you get is averaged over all tracekemhat’. The utilization score weighs
all traces equally, whereas the performance score weighedrby the number of operations. In other
words, if you are worried about speed, optimize for the latgeaces.

e For consistency with thei bc mal | oc package, which returns blocks aligned on 8-byte boundaries
your allocator must always return pointers that are aligioegtbyte boundaries. The driver will check
this requirement.

e Your codemustcompile without warnings. Warnings often point to subtleoes in your code; when-
ever you get a warning, you should double-check the corragipg line to see if the code is really
doing what you intended. If it is, then you should elimindie tvarning by tweaking the code (for
instance, one common type of warning can be eliminated bingddtype-cast where a value is being
converted from one type of pointer to another). We have adidgs in the Makefile to force your
code to be error-free. You may remove those flags during dpwednt if you wish, but please realize
that we will be grading you with those flags activated.

9 Evaluation

The grading of the final hand-in will be based on the perforoeanf your allocator on the given traces, the
quality of your heap checker, and your coding style. The fivaald-in is described in more detail below.

This is a special lab in that it is not expected for you to ged@. In fact, in previous semesters, no students
have received a perfect score on this lab. Do not be alarnsgttu cannot get a perfect 100! Earning a 95
onnal | oc is extremelyimpressive, and you should be very proud if you can do so.

There are a total of 120 points. You will receizero pointsf you break any of the rules or if your code is
buggy and crashes the drivé?lease be sure you have read all of the rules ab&@therwise, your grade
will be calculated as follows:

Performance (100 points)wo metrics will be used to evaluate your solution:

e Space utilization The peak ratio between the aggregate amount of memory yste lriver (i.e.,
allocated viamal | oc but not yet freed vid r ee) and the size of the heap used by your allocator.
The optimal ratio equals 1. You should find good policies taimize fragmentation in order to make
this ratio as close as possible to the optimal.

e Throughput The average number of operations completed per second.

The driver program summarizes the performance of your atlcby computing gerformance index
0 < P <100, which is a weighted sum of the space utilization and thrpugh

U — Ui T—T. .
P =100 * (wmin (1—”‘”) (1 — w)min (177%))
Umaa: - Umzn () Tmam - Tmin

whereU is your space utilization]" is your throughput/,,.... andT,,.... are the estimated space utilization
and throughput of an optimizeml | oc package, and/,,;, areT,,;, are minimum space utilization and

throughput values, below which you will receive 0 pointsThe performance index favors space utilization
over throughputw = 0.63.

The values folmin, Umazs Trmin, aNdTmas are constants in the driver (0.6, 0.93, 0 Kops/s, and 25,0f)s48) that your
instructor established when they configured the progranis iffeans that once you beat 93% utilization and 25,000 Kopsts
performance index is perfect.

Observing that both memory and CPU cycles are expensiveraystsources, we adopt this formula to en-
courage balanced optimization of both memory utilizatiod throughput. Since each metric will contribute
at mostw and1 —w to the performance index, respectively, you should not gexteemes to optimize either
the memory utilization or the throughput only. To receiveoad score, you must achieve a balance between
utilization and throughput.

The 100 performance point$ger f poi nt s) will be allocated as a function of the performance index
($per fi ndex):

if ($perfindex < 60) {
$per fpoints = 0;
}
el sif ($perfindex < 100) {
$perfpoints = (25 + ((3 * $perfindex) / 4));

}
el se {

$per fpoints = 100;
}

You will receive no performance points for an allocator tfalis on any of the traces or has a performance
index lower than 60.

Heap Consistency Checker (10 point&@n points will be awarded based on the quality of your imgam
tation ofmMmcheckheap. It is up to your discretion how thorough you want your heapakter to be. The
more the checker tests, the more valuable it will be as a dghgdool.

However, to receive full credit for this part, we require tttfze header comments for your heap checker list
all of the invariants of your data structures. For each suclrigwg you should state whether or not your
heap checker verifies that it is satisfied. (It is not okay ¢bdil the invariants and not check any of them;
you should at least verify the critical portions.) Some epés of what your heap checker should check are
provided below.

e Checking the heap (implicit list, explicit list, segregalest):

— Check epilogue and prologue blocks.
— Check block’s address alignment.
— Check heap boundaries.

— Check each block’s header and footer: size (minimum sizgnmlent), prev/next allocate/free
bit consistency, header and footer matching each other.

— Check coalescing: no two consecutive free blocks in the .heap
e Checking the free list (explicit list, segregated list):

— All next/prev pointers are consistent (if A's next pointesiqts to B, B’s prev pointer should
point to A).

— All free list pointers points betweememheap_l o() andnemheap_hi gh() .

— Count free blocks by iterating through every block and traieg free list by pointers and see if
they match.

— All blocks in each list bucket fall within bucket size range@regated list).

Style (10 points).

e Your code should be decomposed into functions and use asl&dalgvariables as possible. You
should use macros or inline functions to isolate pointaharetic to as few places as possible.

¢ Your code must begin with a header comment that gives an isvenf the structure of your free and
allocated blocks, the organization of the free list, and lyowr allocator manipulates the free list.

¢ In addition to this overview header comment, each functlwoud be preceded by a header comment
that describes what the function does.

10 Handin Instructions

Make sure you have included your name and Andrew ID in the éree@mment ofrm c.

Hand in yourmm c file by uploading it to Autolab. You may submit your solutios many times as you
wish until the due date.

Only the last version you submit will be graded.
For this lab, you must upload your code for the results to appa the class status page.

NOTE: In previous semesters we have had many students who do rstt fing lab within the time limits;
for this reason we strongly encourage you to submit whatevde you have that receives the highest grade
possible on the due date (and 24 hours thereafter if you ang asgrace day). This will ensure that you
havesomethingsubmitted for wihch we can give you points.

11 Hints

e Use thendri ver - c option or-f option. During initial development, using tiny trace files will
simplify debugging and testing. The first several tracetila i ver runs are such small trace files.

e Use thendri ver -V options. The - V option will also indicate when each trace file is processed,
which will help you isolate errors.

e Use thendri ver - Doption. This does a lot of checking to quickly find errors.

e Use a debuggerA debugger will help you isolate and identify out-of-bourtti@mory references.
Modify the Makefile to pass theg option togcc and not to pass theOQ2 option togcc when you
are using a debugger. But do not forget to restore the Makeftlee original when doing performance
testing.

e Usegdb’swat ch commando find out what changed some value you did not expect to haege.

e Encapsulate your pointer arithmetic in C preprocessor maar inline functionsPointer arithmetic
in memory managers is confusing and error-prone becausk thieacasting that is necessary. You
can reduce the complexity significantly by writing macros your pointer operations. See the text
for examples.

e Remember we are working with 64-bit shark machinBsinters take up 8 bytes of space, so you
should understand the macros in the book and port them tat@#dchines. Notably, on 64-bit
machinessi zeof (si zet) ==

e Use your heap consistency checkéfe are assigning ten points to youmcheckheap function
for a reason. A good heap consistency checker will save youshend hours when debugging your
mal | oc package. You can use your heap checker to find out where gxhothys are going wrong
in your implementation (hopefully not in too many placesMlake sure that your heap checker is
detailed. Your heap checker should scan the heap, perfgrsainity checks and possibly printing out
useful debugging information. Every time you change youplamentation, one of the first things
you should do is think about how yoamcheckheap will change, what sort of tests need to be
performed, and so on.

e Use a profiler.You may find thegpr of tool helpful for optimizing performance.

e Keep backupswWhenever you have a working allocator and are consideringnmgahanges to it, keep
a backup copy of the last working version. It is very commomgke changes that inadvertently break
the code and then have trouble undoing them.

e Versioning your implementationYou may find it useful to manage a couple of different versions
of implementation (e.g., explicit list, segregated listiyidg the assignment. Sincalr i ver looks
for mm c, creating a symbolic link between files is useful in this caSer example, you can create
a symbolic link betweemm ¢ and your implementation such ast expl i ci t. ¢ with command
lineln -s mMmexplicit nmm c. Now would also be an great time to learn an industrial-gjtien
version control system like Git (http://git-scm.com).

e Start early! It is possible to write an efficiental | oc package with a few pages of code. However,
we can guarantee that it will be some of the most difficult apghssticated code you have written so
far in your career. So start early, and good luck!

12 More Hints

Basically, you want to design an algorithm and data strectar managing free blocks that achieves the
right balance of space utilization and speed. Note thatitk@ves a tradeoff. For space, you want to keep
your internal data structures small. Also, while allocgtim free block, you want to do a thorough (and

hence slow) scan of the free blocks, to extract a block thsitfite our needs. For speed, you want fast (and
hence complicated) data structures that consume more.dgaoeare some of the design options available
to you:

¢ Data structures to organize free blocks:

— Implicit free list
— Explicit free list
— Segregated free lists

e Algorithms to scan free blocks:

— First fit/next fit
— Blocks sorted by address with first fit
— Best fit

You can pick (almost) any combination from the two. For exmpou can implement an explicit free list
with next fit, a segregated list with best fit, and so on. Alsmj gan build on a working implementation of
a simple data structure to a more complicated one.

In general, we suggest that you start with an implicit freg lihen change this to an explicit list, and then
use the explicit list as the basis for a final version basedegregjated lists.

10

