15-213/18-243, Fall 2010
Lab Assignment L1: Manipulating Bits
Assigned: Aug. 24, Due: Tuesday, Sept. 7, 11:59PM
Last Possible Time to Turn in: Friday, Sept. 10, 11:59PM

Important: There is a lot of information in this handout. Be sure to stildarefully, and to reread it when
you have questions before asking for help from one of theseosiaff.

Please contact the 15-213 staff li$b(213-staff@cs.cmu.edu) for questions about assignment.

1 Introduction

The purpose of this assignment is to become more familidr bittlevel representations of common pat-
terns, integers, and floating-point numbers. You'll do thyssolving a series of programming “puzzles.”
Many of these puzzles are quite artificial, but you'll find yself thinking much more about bits in working
your way through them.

1.1 Logistics

This is an individual project. All handins are electronidaffications and corrections will be posted on the
Autolab message board.

1.2 Logging in to Autolab

All 15-213 labs are being offered this term through a Webisersteveloped by Hunter Pitelka and Prof. David
O’Hallaron calledAutolah Before you can download your lab materials, you will needpdate your Au-
tolab account. Point your browser at the Autolab front page

http://autolab.cs.cmu.edu

You will be asked to authenticate via WeblSO. After you antloate this first time, Autolab will prompt you
to update your account information with a “nickname.” Youckmame is the external name that identifies
you on the public scoreboards that Autolab maintains fohemsignment, so pick something interesting!

You can change your nickname as often as you like. Once yaaitgadated your account information, click
on “Edit", and then select the “Home” link to proceed to theiimAutolab page.

If you added the class late, you might not be included in Aalil list of valid students. In this case you

won't see the 15-213/18-243 course listed on your Autolaiménpage. If this happens, just send email to
the staff mailing list (15-213-staff@cs.cmu.edu) reqgumgsan Autolab account, and we will add you to the
list.

1.3 Obtaining your Lab Materials

Your lab materials are contained in a Unix tar file cakiiedalab-handout.tar , which you can down-
load from Autolab. After logging in to Autolab at

http://autolab.cs.cmu.edu

you can retrieve thdatalab-handout.tar file by selecting “Datalab -¢, Download Lab Materials” and
then hitting the “Save File” button.

Start by copyingdatalab-handout.tar to a directory in which you plan to do your work. Then give
the commandtar xvf datalab-handout.tar ". This will create a directory calledatalab-handout

that contains a number of files. The only file you will be moitifyand handing in ibits.c

WARNING : Do not let the Windows WinZip program open up yotar file (many Web browsers are set
to do this automatically). Instead, save the file to your Al®aiory and use the Linutar program to
extract the files. In general, for this class you should NEMER any platform other than Linux to modify
your files, doing so can cause loss of data (and important!jvork

The filebtest.c contains code that performs a simple, non-exhaustive abfettle functional correctness
of your code. The filREADMIEontains additional documentation ab@aEsT. Use the commanthake
to generate the test code and run it with the commAstdst

The included programpLc can be used to check your solutions for compliance with ttdingprules. The
included programssHow andFsSHOW can be used to help examine the bit representations of inéege
floating point numbers.

The files in the subdirectoripddcheck implement the BDD checker, a tool that formally verifies your
code.

The filedriver.pl is the mairdriver programthat use®Lc and the BDD checker to check ydbits.c
for correctness, grades your submission, and optionalasts the results to the Autolab server for inclu-
sion on the Autolab scoreboard. You can run the driver am@tdike you to check your work.

The remaining files are used to build the progmngsT.
1.4 Your Assignment
Thebits.c file contains a skeleton for each of the 13 programming pgzXeur assignment is to com-

plete each function skeleton according to a strict set afianmming rules, intended to help you understand
how values are represented at the bit-level and how to methit patterns using standard C operations.

2

2 Evaluation

Your code will be compiled witlecc and exhaustively tested with the BDD checker. Your scoré bl
computed out of a maximum of 66 points based on the followisgitution:

35 Correctness of code.
26 Performance of code, based on number of operators usedhirfugaation.

5 Style points, based on your instructor’s subjective evanaof the quality of your solutions and your
comments.

The 13 puzzles you must solve have been given a difficultpgdietween 1 and 4, such that their weighted
sum totals to 35.

The code irBTEST simply tests your functions for a number of different cage®. most functions, the num-
ber of possible argument combinations far exceeds whatidmitested exhaustively. To provide complete
coverage, we have created an experimeforahal verificationprogram,CBIT that, in effect, tests your func-
tions for all possible combinations of arguments. It doés iy viewing each bit of the function result as
a Boolean function of the bits comprising the function arguats. It uses a data structure knowrBasary
Decision DiagramgBDDs) (R. E. Bryant|EEE Transactions on Computer8ugust, 1986) to represent
these Boolean functions in a way such that the program canesffiy compare the results of your functions
with those of a set of reference solutions. If the bit-levgldtions match, then the two C functions compute
identical results. Otherwis&BIT can generate aounterexamplei.e., a set of function arguments where
your function will produce a different result than the reigce solution.

You do not invokecBIT directly. Instead, there is a series of Perl scripts thatigetnd evaluate the calls to
it. Execute

unix> ./bddcheck/check.pl -f fun
to check functiorfun . Execute
unix> ./bddcheck/check.pl

to check all of your functions.

Note: The Perl scripts are a bit picky about the formatting of yoode. They expect the function to open
with a line of the form:

int fun (...)
or

unsigned fun (...)

and to end with a single right brace in the leftmost column.atT$hould be the only right brace in the
leftmost column of your function.

You will get full credit for a puzzle if the BDD checker deteimas that your solution is correct, and no
credit otherwise. The formal verification provided by theBBhecker will show you that there are no bugs
lurking in your code. You'll find yourself wishing you coulddhis kind of testing with every program you
write. Unfortunately, BDDs can handle only relatively simfunctions such as the ones you are writing for
this assignment. Beyond this, the BDDs get too large to sgprteand manipulate.

Regarding performance, our main concern at this point ircthese is that you can get the right answer.
However, we want to instill in you a sense of keeping thingstast and simple as you can. Furthermore,
some of the puzzles can be solved by brute force, but we wartoylee more clever. Thus, for each function
we've established a maximum number of operators that yoalloeed to use for each function. Assign-
ment operators €’) aren’t counted. This limit is very generous and is destypaly to catch egregiously
inefficient solutions. You will receive two points for eaalmttion that satisfies the operator limit.

Finally, we've reserved 5 points for a subjective evaluatid the style of your solutions and your com-
menting. Your solutions should be as clean and straightfoivas possible. Your comments should be
informative, describing the strategy behind your solution

3 Bit and Integer Manipulations

The first series of puzzles involve creating common bit past&and manipulating two’s complement rep-
resentations of integers. These puzzles have the stre¢esif programming rules. You may only use
straightlinecode (i.e., no loops or conditionals) and a limited numbet afithmetic and logical operators.
Specifically, you arenly allowed to use the following operators:

=1 7& 7|+ << >>

A few of the functions further restrict this list. Also, youeaonly allowed to use constant values between
0 and 255 Qx0 to OxFF). See the comments lnits.c for detailed rules and a discussion of the desired
coding style.

For the bit and integer manipulation puzzles, you may notamyecontrol structures such as loops, function
calls, and conditionals within your code. You also may noadg casting or use any data types other than
int . You may not use any unions, structs, or arrays. You may asshat data typént is 32 bits long
and encodes integers in two's complement format. Both kdtréght shifts require a shift amount between
0 and 31, and right shifts are performed arithmeticalWARNING: Do not try to shift by more than 31,
bad things will happen! (See Section 4 for coding rules foeopuzzles.)

3.1 Partl: Bit Manipulations

Table 1 describes a set of functions that manipulate andsetstof bits. The “Rating” field gives the
difficulty rating (the number of points) for the puzzle, ahé tMax ops” field gives the maximum number
of operators you are allowed to use to implement each fumct®ee the comments brits.c for more

Name

Description Rating | Max Ops

implication(x,y)
byteSwap(x,n,m)
conditional(x,y,z)
bang(x)
isAsciiDigit(x)
allEvenBits(x)
logicalShift(x,n)

X >y 2
Swaps nth byte in x with mth byte in x.
Sameax ? vy . z

Compute !x without using !

Does x represent an ASCII digit?

Are all even-numbered bits in x set to 1?
Shift x to the right n bits.

WNWkAWN

25
16
12
15
12
20

Table 1: Bit-Level Manipulation Functions.

Name Description Rating | Max Ops
tmin(x) Return the minimum two’s complement integer 4
leastBitPos(x) Return mask of least significant one bit 6
isLessOrEqual(x,y) Returnx<=y 24
howManyBits(x) Returns the minimum number of bits needed to represent 90
Table 2: Arithmetic Functions
details on the desired behavior of the functions. You may adfer to the test functions bests.c . These

are used as reference functions to express the correctibebéyour functions, although they don’t satisfy
the coding rules for your functions.

3.2 Part ll: Two’s Complement Arithmetic

Table 2 describes a set of functions that make use of the t@aplement representation of integers. Again,

refer to the comments ibits.c

and the reference versionstasts.c for more information.

4 Floating-Point Operations

For this part of the assignment, you will implement some cammingle-precision floating-point opera-
tions. In this section, you are allowed to use standard obstructures (conditionals, loops), and you may
use bothint andunsigned data types, including arbitrary unsigned and integer @mst You may
not use any unions, structs, or arrays. Most significanthy snay not use any floating point data types,
operations, or constants. Instead, any floating-pointaomewill be passed to the function as having type
unsigned , and any returned floating-point value will be of typesigned . Your code should perform

the bit manipulations that im

plement the specified floatiompoperations.

Name Description| Rating | Max Ops
float_neg(f) —f 2 10
float_f2i(f) (int) f 4 30

Table 3: Floating-Point Functions. Valfieis the floating-point number having the same bit representat
as the unsigned integef .

4.1 Part lll: Floating-Point Arithmetic

Table 3 describes a set of functions that operate on thevstl-fepresentations of floating-point numbers.
Refer to the comments ioits.c and the reference versionstists.c ~ for more information.

The included progranfsHow helps you understand the structure of floating point numbeting you
decipher the results from the BDD checker on floating-ponabfems. When the BDD checker finds a
counterexample, it prints the decimal value of argumernt{a) cause a discrepancy between the puzzle
code and the reference version. To see what these bit pattepnesent as a floating-point number, use
FSHOW, e.g.:

unix>./fshow 2080374784

Floating point value 2.658455992e+36
Bit Representation 0x7c000000, sign = 0, exponent = f8, frac tion = 000000
Normalized. 1.0000000000 X 27(121)

You can also giveesHow hexadecimal and floating point values, and it will deciplmairtbit structure.

Functionsfloat_abs andfloat_half must handle the full range of possible argument values,dacl
ing not-a-number (NaN) and infinity. The IEEE standard doatsspecify precisely how to handle NaN's,
and the 1A32 behavior is a bit obscure. We will follow a contiem that when of these functions is given a
NaN value as argument, it returns the same value for thetresul

5 Advice

You can work on this assignment using one of the class shadkimes or one of the the Andrew Linux
servers ¢sh unix.andrew.cmu.edu). The BDD checker and theLc program are distributed as 32-
bit Linux executables, and so you'll need to be working onmpatible Linux machine in order to use those
tools. In general, we recommend that you work on the sharkhimes, since these are the systems you'll
be using for most of the labs in this course.

The bLc program, a modified version of an ANSI C compiler, will be usectheck your programs for
compliance with the coding style rules. The typical usage is

unix> ./dlc bits.c

Type./dic -help for a list of command line options. The README file is also Halp

6

e ThebDLC program runs silently unless it detects a problem.

¢ Andrew Linux machines have a program calladr/local/bin/dIc , Which isnotthe same as
ourDLC program. So always rupnLc using a full path name:

unix> ./dlc bits.c

e Don't include the<stdio.h> header file in youbits.c file, as it confuse®Lc and results in
some non-intuitive error messages. You will still be ablaeiseprintf in your bits.c file for
debugging without including thestdio.h> header, althouglecc will print a warning that you
can ignore.

e TheDLC program enforces a stricter form of declarations than iscse for C++ or Java or even
that is enforced bycc. In particular, any declaration must appear in a block (wiwat enclose in
curly braces) before any statement that is not a declaraonexample, it will complain about the
following code:

int foo(int x)

{
int a = x;
a *= 3; / = This statement is not a declaration * [
int b = a;, / * ERROR: Declaration not allowed here * [
}

The BDD checker cannot handle functions that call othertfans, includingprintf . You should use
BTEST to evaluate code with debuggimgintf statements. Be sure to remove any of these debugging
statements before handing in your code.

Check the fileREADMEor documentation on running treeresT program. You'll find it helpful to work
through the functions one at a time, testing each one as yo¥aocan use thef flag to instructBTEST

to test only a single function, e.g/ptest -f bitAnd . You can feed it specific function arguments
using the option flagsl , -2 , and-3 . Also, the-g option is a nice way to get a compact summary of the
correctness of each function.

The testing provided bgTEST is somewhat weak for the floating-point problems, whereettage tricky
issues of denormalized numbers, rounding, and overflow.ttus8DD checker to detect problems in your
code, but then useTEST andrFsHow (or ISHOW for integer problems) to help you better understand what'’s
going on.

6 Submission Instructions

Unlike other courses you may have taken in the past, in thisseoyou may handin your work as often as
you like until the due date of the lab. There are two types otihas: unofficial andofficial handins.

e Unofficial handins. As you work on the assignment you can use the driver proghaver.pl to
stream your current results to the Autolab server to be aysol on the public real-time scoreboard

7

that Autolab maintains for this assignment. The driver sghme program our autograder calls when
it grades your handin. If your useridli®vik , then typing

unix> ./driver.pl -u bovik

will stream your results (in the form of an ASCII text line wallcanautoresult string to the Autolab
server. The autoresult strings are logged, and the lastesuiits from each student are periodically
summarized on the scoreboard, under each student’s Auialkbame.

The Autolab Data Lab page provide an option that allows youidw the scoreboard (“View Class
Scoreboard”). The scoreboard is updated every few seconds.

¢ Official handins. The autoresult strings sent from your local copy of the dnpregram are unofficial
and just for fun. To receive credit, you will need to uploadiybits.c file using the Autolab option
“Handin your work for credit”. Each time you handin your cotlee server will run the driver program
on your handin file and produce a grade report (it also logsffaciab autoresult string for the class
status page). The server archives each of your submissigh®sulting grade reports, which you can
view anytime using the “View your handin history and scoregtion.

Notes:

e At any point in time, your most recently uploaded file is yotfiasal handin. You may handin as
often as you like.

e Each time you handin, you should use the “View your handitohjsand scores” option to confirm
that your handin was properly autograded.

e YOu must remove any extraneous print statements from pissuic ~ file before handing in.

e If you have any questions about this lab, the Autolab systamthe course in general, please email
the course staff at5-213-staff@cs.cmu.edu . We respond to emails 24/7 and are very good
about getting back to you fast. Remember: We're here to help!

