
15-213/18-243, Fall 2010
Lab Assignment L4: Cache Lab

Assigned: Tuesday Sep. 28
Due: Tuesday, Oct. 12, 11:59PM

Last Possible Time to Turn in: Friday, Oct. 15, 11:59PM

1 Logistics

This is an individual project. All handins are electronic.

Please contact the 15-213 staff list (15-213-staff@cs.cmu.edu ) for questions about assignment.

2 Overview

This lab tests your understanding of memory cache by asking you to create a cache simulator. The simulator
is like a cache, except that it does not actually store the memory contents—it only records the number of
hits, misses and evictions. You need to understand the following concepts in order to implement the cache
simulator:

• cache hit, miss, eviction

• block offset bits

• set index bits

• associativity

• replacement policy

After implementing a cache simulator, we ask you to write code to compute the transpose of a matrix. You
will need to think of different ways to minize the number of cache misses.

1



3 Downloading the assignment

Your lab materials are contained in a Unix tar file calledcachelab-handout.tar.gz , which you can
download from Autolab. After logging in to Autolab at

http://autolab.cs.cmu.edu

you can retrieve thecachelab-handout.tar.gz file by selecting “Cachelab - Download Lab Materi-
als” and then hitting the “Save File” button.

Start by copyingcachelab-handout.tar.gz to a protected directory in which you plan to do your
work. Then give the command “tar zxvf cachelab-handout.tar ”. This will create a directory
calledcachelab-handout that contains the following files (some of them are generatedby ’make’):

• cachesim.c: A skeleton for the cache simulator

• trans.c: A file containing code to transpose a matrix

• Makefile: Used by ’make’ to generate binaries.

• driver: A binary you can use to evaluate your work

• autograde.py: A script that grades your work and submit unofficial score to autolab

• traces: A folder containing a few reference traces

• andrewIDhandin.tar.gz: A tarball containing cachesim.c and trans.c you can upload to autolab for
credit (updated by ’make’)

To compile code in this lab, simply do:

linux> make clean
linux> make

Note that ”make” also creates a tarball containing cachesim.c and trans.c you can submit to autolab.

WARNING: Do not let the Windows WinZip program open up your.tar.gz file (many Web browsers
are set to do this automatically). Instead, save the file to your AFS directory and use the Linuxtar program
to extract the files. In general, for this class you should NEVER use any platform other than Linux to modify
your files, doing so can cause loss of data (and important work!).

4 The Cache Lab

This lab has two parts. In Part (a) you will implement a cache simulator. In Part (b) you will write a matrix
transpose function that is optimized for cache performance.

2



4.1 Part (a) Building a cache simulator

4.1.1 Generating Memory Traces

On the shark machines, there is a tool calledvalgrind, which can be used to record all memory access of the
execution of a given binary. As an example, you can execute:

linux> valgrind --log-fd=1 --tool=lackey --trace-mem=ye s echo cachelab

The above command runs ”echo cachelab” with valgrind and displays a trace of the memory accesses to
stdout .

In the output, you should see entries such as the following:

I 0400d7d4,8
M 0421c7f0,4
L 04f6b868,8
S 7ff0005c8,8

The format of the trace is ”Operation Address,Size”. In the operation field, ”I” stands for instruction load;
”L” stands for data load; ”S” stands for data store; and ”M” stands for data modify,which should be treated
as a load followed by a store. The memory address is given in hex format, followed by the number of bytes
accessed.

4.1.2 Cache simulator

You goal for part (a) is to write a cache simulator that can take the memory traces from valgrind as input,
and simulate a cache and output the number of cache hits, misses and evictions.

Your cache simulator should be able to handle different cache size and associativity. More specifically, your
cache simulator should take the following arguments on the commandline:

-b: number of block bits (so 2ˆb is the block size)
-s: number of set index bits (so 2ˆs is the number of sets)
-E: associativity (number of lines per set)
-t: file name of the trace to replay

Note we use the same notation (s,S,b,B,E) as in your textbookCSAPP2e page 597. Your cache simulator
should use the LRU (least recently used) replacement policyfor evictions.

We have provided you with the binary of a reference cache simulator calledcachesim.example . You
can execute./cachesim.example to see its usage and command line arguments.

Your job for Part (a) is to fill in the emptycachesim.c file. To help you get started, we have included the
code to parse commandline options.

Note thatcachesim.example can take an optional argument-v , which enables verbose output. Using
this option will help you debug your cache simulator—it prints the hits, miss, and evictions after each

3



memory access. You do NOT need to implement this-v feature in yourcachesim.c , but we strongly
recommend that you do so, as it will help you debug your code.

Important notes:

• In order for us to evaluate your results, at the end of your cache simulator, you must call the function
printCachesimResults() with the number of cache hits, misses and evictions. This sends the results to
the driver for evaluation. You will find it at the end of main()in cachesim.c , please do not delete
that line or you will not get credit for Part (a).

• For this lab, we are interested only in data cache performance, so you should ignore the instruction
cache accesses (lines starting with I). Notice that Valgrind always put ”I” in the first column, and ”M”,
”L”, ”S” in the second column. This may help you parse the trace.

• For the purpose of this lab, you should assume that memory accesses are aligned properly such that a
single memory access never cross block boundaries. By making this assumption, you can ignore the
request sizes in the Valgrind traces.

4.2 Part (b) Optimizing matrix transpose

Your goal for Part (b) is to write a function intrans.c that computes the transpose of a matrix. This
function you write should minimize the number of cache misses. We already included a template that you
can mimic.

4.2.1 Matrix Transpose

Let A denote a matrix, andAij denote the component on the i-th row and j-th column. The transpose ofA,
denotedAT , is a matrix such thatAij = AT

ji.

Note that inside trans.c, we have given you an example function that does the transpose:

char trans_desc[] = "Simple row-wise scan transpose";
void trans(int M, int N, int A[N][M], int B[M][N])

You need to write a similar function calledtranspose_submit() that computes the transpose of matrix
A and saves the results in matrix B. Note that the size of A and Bare given at runtime. We will evaluate
your transpose function using matrices of different sizes (32 by 32, 64 by 64, and 61 by 67).

Your access to local variables (M, N and your own local variables) will not result in recorded cache misses.
This allows you to focus on optimizing matrix access.However, you must not use arrays on the stack or
heap. That is, inside the transpose function, you cannot declare local array variables or use malloc to obtain
extra space.

Important: Please do NOT change the description oftranspose_submit . The description tells the
driver to evaluate that function for credit.

4



Hint: Sometimes you may want to test multiple transpose functionsand compare their performance. In
trans.c , you can declare a number of your own transpose functions. Aslong as you register your function
with the driver (see the end oftrans.c for examples on how to do that), the driver will print the number
of cache misses. Please use the same function signature astrans() .

For every function you register, you should also provide a short description. This string should be short and
not contain newline characters. The driver prints this string for your convenience.

5 Evaluation

This section describes how your work is evaluated. The full score for this lab is 53 points:

• Part (a): 21 Points

• Part (b): 27 Points

• Style: 5 Points

5.1 Evaluation for part (a)

For part (a), we will run your cache simulator using different parameters (s, b, E), and on different traces.
For each test case, outputting the correct number of cache hits, misses AND evictions will give you full
credit for that test case. Each of your reported number of hits, misses and evictions is worth 1/3 of the credit
for that test case. That is, if a particular test case is worth3 points, and your simulator outputs the correct
number of hits and misses, but reports the wrong number of evictions, then you will earn 2 points. There
are six test cases worth 3, 3, 3, 3, 3 and 6 points respectively. The driver runs the following test cases:

linux> ./cachesim -s 1 -E 1 -b 1 -t traces/yi2.trace
linux> ./cachesim -s 4 -E 2 -b 4 -t traces/yi.trace
linux> ./cachesim -s 2 -E 1 -b 4 -t traces/dave.trace
linux> ./cachesim -s 4 -E 2 -b 4 -t traces/simple_trans.trac e
linux> ./cachesim -s 5 -E 1 -b 5 -t traces/simple_trans.trac e
linux> ./cachesim -s 5 -E 1 -b 5 -t traces/long_trace.trace

You can obtain the correct answer for these test cases using the reference cache simulat

5.2 Evaluation for part (b)

We will use the functiontranspose_submit you provide to transpose matrices of different size.

The transpose functions is first evaluated for its correctness. The function will be evaluated using the
refererence cache simulator, with the following assumptions:

• There is a single 1KB direct mapped cache with 32-byte blocks(E = 1, C = 1024, B = 32). There
are 5 set index bits (s = 5) and 5 block offset bits (b = 5).

5



The reference cache simulator will be invoked on trace files generated from your transpose function using
the following arguments:

• linux> ./cachesim.example -s 5 -E 1 -b 5 -t <trace file name>

5.3 Scoring for Part (b)

Your score for Part (b) consists of 1 correctness point and 26performance points.

5.3.1 Correctness

Your transpose function earns 1 point if it is correct. Only one point is given for correctness because we
have already provided you with a correct transpose function.

5.3.2 Performance

If your function is incorrect, it earns 0 points. Depending on the number of misses, your performance score
scales linearly.

1. Transposing 32*32 matrices:
8 points if your function causes less than 350 cache misses.
0 points if your function causes more than 1150 cache misses.

2. Transposing 64*64 matrices:
8 points if your function causes less than 1850 cache misses.
0 points if your function causes more than 4700 cache misses.

4. Transposing 61*67 matrices:
10 points if your function causes less than 2000 cache misses.
0 points if your function causes more than 4400 cache misses.

You do NOT get extra credit for reducing number of misses further.

5.4 Coding style

There are 5 points for coding style. Style guidelines can be found on the course website.

5.5 The driver

You can always run./driver -M 32 -N 32 (M and N are the matrix dimensions the driver use) to
determine:

6



1. Scoring of your cachesim simulator
2. Correctness of your transpose function
3. Number of cache misses of your transpose function

For grading, we will run:
linux> ./driver -M 32 -N 32
linux> ./driver -M 64 -N 64
linux> ./driver -M 61 -N 67

Alternatively, you can just run
linux> ./autograde.py

Note that ”./autograde.py” also submits an unofficial scoreto autolab.

6 Handing in your work

Executing the command ”make”, besides compiling your code,creates a file named andrewIDhandin.tar.gz.
This is tarball containing your cachesim.c and trans.c. To hand in your work, you will need to upload this
tarball (and only this tarball) to Autolab.

Note that grading this lab takes a while, so the score does notimmediately show up after you upload your
work. The score will show up a few minutes after you upload thetarball to Autolab.

7


