15-213/18-243 Fall 2010
Lab Assignment L2: Defusing a Binary Bomb
Assigned: Tue, Sep Due: Thu, Sep 16, 11:59pm
Last Possible Time to Turn in: Sun, Sep 19, 11:59pm

1 Introduction

The nefariouDr. Evil has planted a slew of “binary bombs” on our 64-bit shark maehi A binary bomb

is a program that consists of a sequence of phases. Each @t@ses you to type a particular string on
st di n. If you type the correct string, then the phaseéfused and the bomb proceeds to the next phase.
Otherwise, the bombxplodes by printing” BOOM !'! * and then terminating. The bomb is defused when
every phase has been defused.

There are too many bombs for us to deal with, so we are givinlp student a bomb to defuse. Your
mission, which you have no choice but to accept, is to defose pomb before the due date. Good luck,
and welcome to the bomb squad!

Step 1: Get Your Bomb
You can obtain your bomb from the Autolab site
http://autol ab.cs. cnu. edu

After logging in to Autolab, seledBonbl ab -> Downl oad Lab Material s. The Autolab server
will build your bomb and return it to your browser intar file calledbonbk. t ar, wherek is the unique
number of your bomb.

Save thebonbk. t ar file to a (protected) directory in which you plan to do your woiThen give the
command:t ar -xvf bonbk. tar. This will create a directory called/ borbk with the following
files:

¢ README: Identifies the bomb and its owner.

e bonb: The executable binary bomb.

e bonb. c: Source file with the bomb’s main routine and a friendly gregtrom Dr. Evil.

If for some reason you request multiple bombs, this is notadlpm. Choose one bomb to work on and
delete the rest.

Step 2: Defuse Your Bomb

Your job for this lab is to defuse your bomb.

You must do the assignment on one of the 64-bit class sharkimes: There are ten machines available to
students to use, a full list of which can be found on the couvsb site at:

http://ww. cs. cnu. edu/ ~213/ | abmachi nes. ht n

In fact, there is a rumor that Dr. Evil really is evil, and thenth will always blow up if run elsewhere.
There are several other tamper-proofing devices built edobmb as well, or so we hear.

You can use many tools to help you defuse your bomb. PleakealotheHints section for some tips and
ideas. The best way is to use your favorite debugger to stepgh the disassembled binary.

Each time your bomb explodes it notifies the Autolab served you lose 1/2 point (up to a max of 20
points) in the final score for the lab. So there are conse@sstucexploding the bomb. You must be careful!

The first four phases are worth 10 points each. Phases 5 ardalittte more difficult, so they are worth
15 points each. So the maximum score you can get is 70 points.

Although phases get progressively harder to defuse, theréisg you gain as you move from phase to phase
should offset this difficulty. However, the last phase wilbtlenge even the best students, so please don't
wait until the last minute to start.

The bomb ignores blank input lines. If you run your bomb wittoanmand line argument, for example,
i nux> ./bonb psol.txt

then it will read the input lines fronpsol . t xt until it reaches EOF (end of file), and then switch over
to st di n. In a moment of weakness, Dr. Evil added this feature so yout thave to keep retyping the
solutions to phases you have already defused.

To avoid accidentally detonating the bomb, you will needetarh how to single-step through the assembly
code and how to set breakpoints. You will also need to leam tooinspect both the registers and the
memory states. One of the nice side-effects of doing the daihat you will get very good at using a
debugger. This is a crucial skill that will pay big dividentthe rest of your career.

Logistics

This is an individual project. All handins are electronidafications and corrections will be posted on the
FAQ page, which is available from the main course page.

Handin

There is no explicit handin. The bomb will notify Autolab aatatically about your progress as you work
on it. You can keep track of how you are doing by looking at theotab class scoreboard (From Autolab,
follow Bonbl ab -> Vi ew Cl ass Scor eboar d). This Web page is updated continuously to show
the progress for each bomb.

Hints (Pleaseread this!)

There are many ways of defusing your bomb. You can examimegtéat detail without ever running the
program, and figure out exactly what it does. This is a usefthiiique, but it not always easy to do. You
can also run it under a debugger, watch what it does step pyate use this information to defuse it. This
is probably the fastest way of defusing it.

We do make one requegilease do not use brute force! You could write a program that will try every
possible key to find the right one. But this is no good for seie¥asons:

e You lose 1/2 point (up to a max of 20 points) every time you gumsorrectly and the bomb explodes.

e Every time you guess wrong, a message is sent to the Autotedrs&ou could very quickly saturate
the network with these messages, and cause the system silators to revoke your computer access.

e We haven't told you how long the strings are, nor have we toldwhat characters are in them. Even
if you made the (incorrect) assumptions that they all arg tlean 80 characters long and only contain
letters, then you will have6®® guesses for each phase. This will take a very long time toand,
you will not get the answer before the assignment is due.

There are many tools which are designed to help you figureaththow programs work, and what is wrong
when they don’t work. Here is a list of some of the tools you rfiagt useful in analyzing your bomb, and
hints on how to use them.

e gdb

The GNU debugger, this is a command line debugger tool dlailan virtually every platform. You
can trace through a program line by line, examine memory egidters, look at both the source code
and assembly code (we are not giving you the source code fet ofigour bomb), set breakpoints,
set memory watch points, and write scripts. The CS:APP t@kiVeb page at

http://csapp.cs. cnu. edu/ public/students. htm

has a very handgdb command summary for x86-64 that you can print out and use efegence. It
also contains a link to Prof. Norm Matloffigdb GDB tutorial.

Here are some other tips for usigdb.

— To keep the bomb from blowing up every time you type in a wramuui, you'll need to learn
how to set breakpoints.

— For online documentation, typéh&l p” at the gdb command prompt, or typerrin gdb”,
or “i nf o gdb” at a Unix prompt. Some people also like to rgdb undergdb- node in
enmacs.

e Obj dunp -t

This will print out the bomb’s symbol table. The symbol talrleludes the names of all functions and
global variables in the bomb, the names of all the functibrestiomb calls, and their addresses. You
may learn something by looking at the function names! Fomgpta, you could discover a function
called “expl ode_bonb”, which would be a good place to set a breakpoint to keep tmelbbivom
blowing up.

e Obj dunmp -d

Use this to disassemble all of the code in the bomb. You canjasst look at individual functions.
Reading the assembler code can tell you how the bomb works.

Althoughobj dunp - d gives you a lot of information, it doesn't tell you the whokery. Calls to
system-level functions are displayed in a cryptic form. &mmple, a call tescanf might appear
as:

8048c36: €8 99 fc ff ff call 80488d4 < init+0x1la0>

To determine that the call was $scanf , you would need to disassemble witlgdb.

e strings
This utility will display the printable strings in your bomb

Looking for a particular tool? How about documentation? D&orget, the commandapr opos, man,
andi nf o are your friends. In particulanran asci i might come in usefuli nf o gas will give you
more than you ever wanted to know about the GNU Assemblen, Ate Web may also be a treasure trove
of information. If you get stumped, feel free to ask the teaglstaff for help.

