15-213

“The course that gives CMU its Zip!”

Main Memory and Caches
Sept. 23, 2008

Topics
« DRAM as main memory
« Locality of reference
= Caches

lecture-09.ppt

Announcements

Exam Thursday (two days from now)
« Inclass
« See exams page on class website for info and old exams

Calculator policy
« Calculators will not be needed on the exam; hence forbidden

Collaboration reminder
« Writing code together counts as “sharing code” - forbidden
« Talking through a problem can include pictures (not code)

2 15-213, F'08

Byte-Oriented Memory
Oroganization

Programs Refer to Virtual Memory Addresses
» Conceptually very large array of bytes
« Actually implemented with hierarchy of different memory types

« System provides address space private to particular “process”
« Program being executed
« Program can clobber its own data, but not that of others

Compiler + Run-Time System Control Allocation
« Where different program objects should be stored
« All allocation within single virtual address space

15-213, F'08
From class02.ppt

Simple Addressing Modes

« Normal (R) Mem[Reg[R]]
= Register R specifies memory address

movl (%ecx) ,%eax
= Displacement D(R) Mem[Reg[R]+D]

= Register R specifies start of memory region
« Constant displacement D specifies offset

movl 8(%ebp) ,%edx

15-213, F'08
From class04.ppt

Traditional Bus Structure Connecting
CPU and Memory

A bus is a collection of parallel wires that carry
address, data, and control signals.

Buses are typically shared by multiple devices.

CPU

register file

ALU

memory bus

. main
bus interface < > memory

5 15-213, F08

Traditional Bus Structure Connecting
CPU and Memory

A bus is a collection of parallel wires that carry
address, data, and control signals.

Buses are typically shared by multiple devices.

CPU

register file

ALU

memory bus

] main
bus interface < > memory

6 15-213, F'08

Memory Read Transaction (1)

Step 1: CPU places address A on the memory bus with
signal indicating “read”

CPU

register file Load operation: movl A, %eax
Yheax ALU

ﬁ main memory
A 0
@\’—‘/ X A

7 15-213, F'08

Memory Read Transaction (2)

Steps 2-4: Main memory reads A from the memory bus,
retrieves word X, and places it on the bus

CPU

register file Load operation: movl A, %eax
Yheax ALU

ﬁ main memory
0

X
X A

8 15-213, F'08

Memory Read Transaction (3)

Step 5: CPU reads word x from the bus and copies it
into register %eax

CPU

register file Load operation: movl A, %eax
ALU
Y%eax | Q:]

X
j I main memory
0
bus interface > X A

9 15-213, F'08

Memory Write Transaction (1)

Step 1: CPU places address A on the memory bus with
signal indicating “write”

CPU

register file Store operation: movl %eax, A
ALU
%eax [y A’:]
II main memory
A 0

bus interface A

10 15-213, F'08

Memory Write Transaction (2)
Step 2: CPU places data word y on the memory bus

CPU

register file Store operation: movl %eax, A
ALU
%eax [y A’:]

i I main memory
y 0

P N R W
bus interface A

11 15-213, F'08

Memory Write Transaction (3)

Steps 3-4: Main memory reads data word y from the bus
and stores it at address A

CPU

register file Store operation: movl %eax, A
ALU
%eax [y A’:]

main memory
0

. A

12 15-213, F'08

Random-Access Memory (RAM)

Key features
« RAM is traditionally packaged as a chip
» Basic storage unit is normally a cell (one bit per cell)
=« Multiple RAM chips form a memory

Dynamic RAM (DRAM)
« Common technology for main memory
» Organized in two dimensions (rows and columns)
« To access: select row then select column
« Consequence: 2"d row access faster than different column/row
« Some technical details
« Each cell stores bit with a capacitor
« One transistor is used for access
« Value must be refreshed every 10-100 ms

13 15-213, F'08

Conventional DRAM Organization

d x w DRAM:
« dw total bits organized as d supercells of size w bits

16 x 8 DRAM chip

' cols :
‘ 3
2 bits H 0 i
addr ! 1
' 1 :
‘rows :
memory ; P !
controller !
(to CPU) 1 :
) ' 3 ;
8 bits '
data | | ‘ | :
14 : internal row buffer 15-213, F08

Conventional DRAM Organization

d x w DRAM:
« dw total bits organized as d supercells of size w bits

16 x 8 DRAM chip

! cols ;

1 0 1 3 ;

2pits | o0 123

addr j 1| a 5 6 7 1

‘rows :

<:: memory | 21 8| 9 |10|11]:
controller ; :

(to CPU) b s|12(13 |14 |15 ;
8 bits i

data 1 | ‘ | i

15

15-213, F'08

Conventional DRAM Organization

d x w DRAM:
« dw total bits organized as d supercells of size w bits

16 x 8 DRAM chip

' cols :
‘ 3
2 bits 1 0 %
addr ! 1
; 1 :
‘rows :
memory ' 2 :
controller !
(to CPU) 1 :
. ' 3 ;
8 bits '
data | | ‘ | :
16 : internal row buffer 3 15-213, F08

Conventional DRAM Organization

d x w DRAM:
« dw total bits organized as d supercells of size w bits

16 x 8 DRAM chip

cols
; 3
2 bits 0 ‘
addr ;
' 1 !
— rows |
memor : ‘
controll)ér 2 -~ || ! supercell #9
(to CPU) 3 ; (2,1)
8 :
8 bits !
data | ‘ | :
17 i internal row buffer 1515 Fos

Reading DRAM Supercell #9 = (2,1)

Step 1(a): Row access strobe (RAS) selects row 2

Step 1(b): Row 2 copied from DRAM array to row buffer

16 x 8 DRAM chip

,,

; cols
RAS = 2 ! 3
2 1
> 0
addr
' 1
irows
memory '
controller 2
s | 3
[
data
18 : internal row buffer 15-213, F'08

Reading DRAM Supercell #9 = (2,1)

Step 2(a): Column access strobe (CAS) selects column 1

Step 2(b): Supercell (2,1) copied from buffer to data lines, and
eventually back to the CPU
16 x 8 DRAM chip

,,

§ cols
CAS = 1 | El
2 1
e a— 0
To CPU addr
— frows
memory '
controller : 2
supercell ' 3
@1 W
data | E F
supercell | . :
19 F()Z,l) ' internal row buffer 1 15-213, F'08

Multi-chip Memory Modules

[addr (row = i, col = j)

O: supercell (i,)

64 MB

RAM
al P memory module
R ol B consisting of
DRAM 7 o o eight 8Mx8 DRAM
- 0 chips
—

bits 'bits ' bits | bits bits ' bits bits | bits
56-63 48-55 40-47 32-39 24-31 16-23 8-15 0-7

63 56 55 4847 4039 3231 2423 1615 87

(i Memory
controller

64-bit doubleword at main memory address A

64-bit doubleword
20 15-213, F'08

Memory access is slow

Obervation: memory access is slower than CPU cycles

« A DRAM chip has an access time of 30-50ns
« further, systems may need 3x longer or more to get the data
from memory into a CPU register

« With sub-ns cycle times, 100s of cycles per memory access
=« and, the gap has been growing

Can’t go to memory on every load and store
« approximately 1/3 of instructions are loads or stores

21 15-213, F'08

Caches to the rescue

Cache: A smaller, faster memory that acts as a staging
area for a subset of the data in a larger, slower memory

22 15-213, F'08

General cache mechanics

Smaller, faster, more expensive
cache: || 4 J[o |[20 |[3] memory caches a subset of
the blocks

Data is copied between

levels in block-sized

transfer units

Lo J[2 J[2 |[s]
Memory: | 4 | I 5 l I 5 l I 7 l !_arger_, _slowef, cheaper memory
I 8 l I 9 l I 10 l I 11 l is partitioned into “blocks”
[12 |[13][14 |[15 |
23 15-213, F08

General Caching Concepts (hit)

Program needs object d, which is

Request stored in some block b
0 1 2 3 Cache hit
Cache: ‘ [4][9] ‘ « Program finds b in the cache
E.g., block 14
[o]
Vem [4][5 J[e J[7]
[o]

24 15-213, F'08

General Caching Concepts (miss)

Program needs object d, which is

Request .
=1 stored in some block b
0 1 2 3 Cache hit
cache: | [227][9 | ‘ = Program finds b in the cache
E.g., block 14
[| Re9uest Cache miss
« bis notin cache, so must fetch it
E.g., block 12
[0] « If cache is full, then some current
block must be replaced (evicted).
Mem: (4] (6] Which one is the “victim”?
[o] « Placement policy: where can the
[12] new block go? E.g., slot #(b mod 4)
=« Replacement policy: which block
should be evicted? E.g., LRU
25 15-213, F'08

Types of cache misses

Cold (compulsory) miss
« Cold misses occur on first accesses to given blocks

Conflict miss

» Most hardware caches limit blocks to a small subset
(sometimes a singleton) of the available cache slots
« e.g., block i must be placed in slot (i mod 4)
« Conflict misses occur when the cache is large enough, but
multiple data objects all map to the same slot
« e.g., referencing blocks 0, 8, 0, 8, ... would miss every time

Capacity miss
« Occurs when the set of active cache blocks (working set) is
larger than the cache

26 15-213, F'08

Types of cache misses

Cold (compulsory) miss
« Cold misses occur on first accesses to given blocks

Conflict miss

« Most hardware caches limit blocks to a small subset
(sometimes a singleton) of the available cache slots
= e.g., block i must be placed in slot (i mod 4)
« Conflict misses occur when the cache is large enough, but
multiple data objects all map to the same slot
= e.g., referencing blocks 0, 8, 0, 8, ... would miss every time

Capacity miss
« Occurs when the set of active cache blocks (working set) is
larger than the cache

27 15-213, F'08

Locality: why caches work

Principle of Locality:
« Programs tend to use data and instructions with addresses
near or equal to those they have used recently
« Temporal locality: Recently referenced items are likely to be
referenced again in the near future
« Spatial locality: Items with nearby addresses tend to be
referenced close together in time

Locality Example: sum = 0;

for (i = 0; 1 < n; i++)
+ Data sum += a[i];
—Reference array elements in succession return sum;

(stride-1 reference pattern): Spatial locality
—Reference sum each iteration: Temporal locality
« Instructions
—Reference instructions in sequence: Spatial locality

—Cycle through loop repeatedly: Temporal locality
28 15-213, F'08

Locality Example #1

Being able to look at code and get a qualitative sense of
its locality is a key skill for a professional programmer

Question: Does this function have good locality?

int sum_array_rows(int a[M][ND)
{
int i, j, sum = 0;
for (i = 0; § < M; i++)
for g = 0; j < N; j++)|
sum += a[ilLil;
return sum;
3
29 15213, F08

Locality Example #2

Question: Does this function have good locality?

int sum_array_cols(int a[M]1[N])
{
int i, j, sum = 0;
for (= 0; J < N; j++)
for (i = 0; 1 < M; i++)
sum += a[il[i];
return sum;
3
30 15-213, F'08

Locality Example #3

Question: Can you permute the loops so that the
function scans the 3-d array a[] with a stride-1

reference pattern (and thus has good spatial
locality)?

int sum_array_3d(int a[M][N][NI)
{
int i, j, k, sum = 0;
for (i = 0; i < M; i++)
for (J = 0; j < N; j++)
for (k = 0; k < N; k++
sum += a[k1[i1Li]1;
return sum;
3

31 15-213, F'08

Memory Hierarchies

Some fundamental and enduring properties of
hardware and software systems:

» Faster storage technologies almost always cost more per
byte and have lower capacity

« The gaps between memory technology speeds are widening
« True of registers:DRAM, DRAM:disk, etc.

« Well-written programs tend to exhibit good locality

These properties complement each other beautifully

They suggest an approach for organizing memory and
storage systems known as a memory hierarchy

32 15-213, F'08

An Example Memory Hierarchy

Smaller,
faster,
and
costlier
(per byte)
memories

Larger,
slower,
and

(per byte)
memories

cheaper L4:

L1,

cache (SRAM)

L2:

LO:

from L1 cache

egister: } CPU registers hold words retrieved

on-chip L1

} from the L2 cache
off-chip L2

L3:

cache (SRAM) } L2 cache holds cache lines

retrieved from main

main memory

disks

(DRAM) }

local secondary storage

L1 cache holds cache lines retrieved

memory

Main memory holds disk
blocks retrieved from local

(local disks)

L5:

remote secondary storage

retrieved from disks on
remote network servers

(tapes, distributed file systems, Web servers)

33

} Local disks hold files

15-213, F08

Caching is the core concept

Fundamental idea of a memory hierarchy:

« For each k, the faster, smaller memory at level k serves as a
cache for the larger, slower memory at level k+1

Why do memory hierarchies work?

« Locality causes many accesses to be hits at level k
« More than its relative size would suggest

» Thus, many fewer accesses to level k+1
« The storage at level k+1 can be slower, larger and cheaper

Net effect: A large pool of memory with the cost of
cheap storage near the bottom, but the performance
of the expensive storage near the top

34 15-213, F'08

Examples of Caching in the Hierarchy

Cache Type What is Where is it Latency Managed
Cached? Cached? (cycles) By
Registers 4-byte words CPU core 0 | Compiler
TLB Address On-Chip TLB 0 | Hardware
translations
L1 cache 64-bytes block | On-Chip L1 1 | Hardware
L2 cache 64-bytes block | Off-Chip L2 10 | Hardware
Virtual 4-KB page Main memory 100 | Hardware+
Memory oS
Buffer cache Parts of files Main memory 100 | OS
Network buffer | Parts of files Local disk 10,000,000 | AFS/NFS
cache client
Browser Web pages Local disk 10,000,000 | Web
cache browser
Web cache Web pages Remote server 1,000,000,000 | Web proxy
disks server
35 15-213, F'08

Summary

« The memory hierarchy is a fundamental consequence
of maintaining the random access memory abstraction
and practical limits on cost and power consumption

» Locality makes caching effective

« Programming for good temporal and spatial locality is
critical for high performance
« For caching and for row-heavy access to DRAM

« Trend: the speed gaps between levels of the memory
hierarchy continue to widen
« Consequence: inducing locality becomes even more important

36 15-213, F'08

