15-213

“The course that gives CMU its Zip!”

Files
Oct. 28, 2008

Topics
= Mapping file offsets to disk blocks
« File system buffering and you
= The directory hierarchy

lecture-18.ppt

Announcements

Exam Thursday
= Style like exam #1: in class, open book/notes, no electronics
= class website has details and old exams

9 15-213, F08

Reminder: Unix I/O

Key Features

« Elegant mapping of files to devices allows kernel to export
simple interface called Unix 1/O.

= Important idea: All input and output is handled in a
consistent and uniform way.

Basic Unix I/O operations (system calls):

= Opening and closing files

= open()and close()

« Reading and writing a file
« read() and write()

= Changing the current file position (seek)
= Indicates next offset into file to read or write

= Lseek ()

3 From lecture-13.ppt

B,

B,

*° By.4| B

B
T

Current File Position = k

15-213, F'08

Reminder: Disk Structure

Read/Write Head Arm

Upper Surface
Platter
Lower Surface — q

15-213, F'08

Reminder: Disk storage as array of
blocks

15|67 12 23 ="

OS’s view of storage device
(as exposed by SCSI or IDE/ATA protocols)

= Common “logical block™ size: 512 bytes
= Number of blocks: device capacity / block size

« Common OS-to-storage requests defined by few fields
= R/W, block #, # of blocks, memory source/dest

5 From lecture-17.ppt 15-213, F08

Mapping file offsets to disk LBNSs

= ISsue in question
= nNeed to keep track of which LBNs hold which file data

= Most trivial mapping: just remember start location

« then keep entire file in contiguous LBNs
= what happens when it grows?

= alternately, include a “next pointer” in each “block”
= how does one find location of a particular offset?

= Most common approach: block lists
= an array with one LBN per block in the file

= Note: file block size can exceed one logical (disk) block
= SO, groups of logical blocks get treated as a unit by file system
= e.g., 8KB =16 disk blocks (of 512 bytes each)

%) 15-213, F08

A common approach to recording a block list

v

Direct Block 1
Data | (Ibn 576)

v

Direct Block 2
Data | (Ibn 344)

v

Direct Block 12
Data (Ibn 968)

Indirect Block E—

Data Block 13—
Data | (Ibn 632)

Data Block 14
Data | (Ibn 1944)

Data Block N Data | (Ibn 480)

Double-Indirect | —
Block Indirect Block 1

v

Data Block N+1

\ 4

Data (Ibn 96)
Data Block N+2

Data (Ibn 176)

A 4

Indirect Block 2

Data Block Q+1

v

Data (Ibn 72)
V4 = P e 15-213, F'08

Other per-file Information must
also be stored somewhere

« Examples
= length of file
= owner
= access permissions
= last modification time

8 15-213, F'08

Reminder: File Metadata

« Metadata is data about data, in this case file data

= Per-file metadata maintained by kernel
accessed by users with the stat and fstat functions

/* Metadata returned by the stat and fstat functions */
struct stat {

dev_t st _dev; /* device */

ino_t st _1no; /* i1node */

mode_t st_mode; /* protection and file type */
nlink_t st _nlink; /* number of hard links */

uid_t st _uid; /* user ID of owner */

gid t st gid; /* group ID of owner */

dev_t st _rdev; /* device type (if i1inode device) */
off t st_size; /* total size, In bytes */
unsigned long st blksize; /* blocksize for filesystem 1/0 */
unsigned long st _blocks; /* number of blocks allocated */
time_t st _atime; /* time of last access */

time_t st _mtime; /* time of last modification */
time_t st _ctime; /* time of last change */

};

From lecture-13 ppt

Other per-file Information must
also be stored somewhere

« Examples
« length of file
= Owner
= access permissions
« last modification time

« Usually kept together with the block list
=« INn a structure called an “inode”

10 15-213, F'08

File block allocation

= TWO issues
= Keep track of which space is available
= When a new block is needed, pick one of the free ones

« Malloc-like solution — free list

= maintain a linked list of free blocks
= uUsing space in unused blocks to store the pointers

= grab block from this list when a new block is needed
= usually, the list is used as a stack

= While simple, this approach rarely yields good performance
= Why?

11 15-213, F08

File block allocation (cont.)

= Most common approach —a bitmap

= Use alarge array of bits, with one per allocatable unit
= one value says “free” and the other says “in use”

= Scan the array for a “free” setting, when we need a block
= note: we don’t have to just take first “free” block in array
= Wwe can look in particular regions or for particular patterns

= In choosing an allocation, try to provide locality
= €.g., second block should be right after first
= e.9g., first block should be near inode

12 15-213, F'08

Reminder: Reading
Files

« Reading afile copies bytes from the current file
position to memory, and then updates file position

char buf[512];
int fd; /* Tile descriptor */
int nbytes; /* number of bytes read */

/* Open file fd ... */

/* Then read up to 512 bytes from file fd */

iIT ((nbytes = read(fd, buf, sizeof(buf))) < 0) {
perror(*'read");
exit(l);

}

= Returns number of bytes read from file fd into buf
= Return type ssize_tis signed integer
= Nbytes < Oindicates that an error occurred

= short counts (hbytes < sizeof(buf)) are possible and
13 are not errors! 15-213, F'08

Managing file data in-kernel:
buffers

« Staging area between disk and processes

14 15-213, F08

Block-based file buffer management

user: read(fd, buffer, cnt);

+— cnt ——>

logical file:

system buffers:

15

15-213, F'08

Note: large I/Os are more
efficient

= Recall disk performance is location dependent
= Mmilliseconds to position read/write head
= microseconds to read next sector (usually = next LBN)

« Small read()s/write()s sometimes perform very poorly
= Process 1read()s 4KB from file #1 and waits for disk 1/O
Process 2 read()s 4KB from file #2 and waits for disk 1/O
Process 1 continues and read()s next 4KB from file #1
Process 2 continues and read()s next 4KB from file #2

Result: random-like performance instead of sequential
= bandwidth achieved would double with 8KB reads

16 15-213, F08

Naturally, OS keeps a buffer
cache

= Disk I/O costs milliseconds
= as compared to microseconds for in-memory access
= SO, cache in-kernel buffers from previous read()s

« Each non-free buffer often kept on a number of lists

= overflow list associated with hash index
= SO that it can be found during read()

= Least-Recently-Used list (or other importance tracking lists)
= SO that good choices can be made for replacement

= vnode list
= SO that all buffers associated with a file can be found quickly

= dirty block list
= SO that dirty buffers can be propagated to disk, when desired

17 15-213, F'08

Managing file data in the kernel:
buffers

« Staging area between disk and processes

= Two parts of each “buffer”
= header describing controls and buffer containing data

hash links

free-list links

I[ru-list links

vhode pointer

file offset
byte count (8 Kbyte)
flags +—— BLOCKSIZE ——

buffer pointer

18 buffer header buffer contents 15-213, F'08

Write-back caching of file data

= We talked about buffered Unix I/O
= Wherein your printf()s might not show up right away

= This is different, but similar
« that was in your application (library); this is in-kernel

= Most file systems use write-back caching

= buffers in memory are updated on write()
= SO, contents handed off

= Will be sent to disk at some later point
= e.g., “30 second sync”
= or, when OS runs low on memory space

« If system crashes before the disk writes...
= the file updates disappear

19 15-213, F08

20

Volatile main memory and
caching

Cache (in main memory)
Disk contents

15-213, F'08

You can force the disk writes

« Thefsync() operation

= directs file system to write the specified file to disk
= Includes everything associated with that file
= directory entries, inode/attributes, indirect blocks, and data

21 15-213, F'08

Reminder: Opening
Files

= Opening afile informs the kernel that you are getting
ready to access that file

int fd; /* Tile descriptor */

iIfT ((fd = open('/etc/hosts'™, O RDONLY)) < 0) {
perror(*‘open');
exit(l);

}

= Returns a small identifying integer file descriptor
« Fd == -1 indicates that an error occurred

= Each process created by a Unix shell begins life with
three open files associated with a terminal:

= O: standard input
= 1: standard output
22« 2: standard error 15-213, F08

Common approach to naming:
directory hierarchy

« Hierarchies are a good way to deal with complexity
= ... and data organization is a complex problem

= |t works pretty well for moderate-sized data sets
= easy to identify coarse breakdowns
= Whenever gets too big, split it and refine namespace

= Traversing the directory hierarchy
« the ‘. and ‘..’ entries

FIS

directories

23 15-213, F08

What’s in a directory

= Directories to translate file names to inode IDs
= Just a special file with an array of formatted entries

24

4 bytes 2 bytes 2 bytes variable length
d d h N
Lz A Lengt File Name (max. 255 characters) U
number | length of name L
L

= often, sets of entries organized in sector-sized chunks

\ 4

A\ 4

A\ 4

FILE

5 | foo.c

#

DIR| 3 bar | # DIR| 6

mumble

A directory block with three entries

15-213, F'08

A directory and two files

Inode #3

Various
Information

Block #20
<B,5>N_ = ===

Block #20

<A, 3>

Block #42

= Inode #5

Directory Various
Information

Block #42
Block #44

Block #44

Data Blocks

25 15-213, F'08

Managing namespace:
mount/unmount

= One can have many FSs on many devices
= ... but only one namespace

= S0, one must combine the FSs into one namespace

« Starts with a “root file system”
= the one that has to be there when the system boots

= “mount” operation attaches one FS into the namespace
= at a specific point in the overall namespace

= “unmount” detaches a previously-attached file system

20 15-213, F08

Root FS

’ directory

VIEW BEFORE MOUNTING

directories

27

VIEW AFTER MOUNTING

Namespace

directory

sub-directories

15-213, F'08

Finally: walking thru an open()

= Int fd = open(“/foo/bar”, RO);

= Steps:

« translate file name to inode identifier
= lookup “foo” in root directory
= read directory “foo” contents
= lookup “bar” in directory “foo”
= use directory lookup cache first for each lookup step

= Create avnode structure for inode
= lookup inode in inode cache; fetch from disk if necessary
= Initialize vnode structure appropriately

= Create open file structure
= Initialize, pointing to new vnode

« fill in fd table entry

= pick unused entry in table; have it point to new open file
structure

= return corresponding index into fd table

28

15-213, F'08

Reminder: How the Unix Kernel
Represents Open Files

« Two descriptors referencing two distinct open disk
files. Descriptor 1 (stdout) points to terminal, and

descriptor 4 points to open disk file

Descriptor table
[one table per process]

stdin fd O
stdout fd 1 —
stderr fd?2

fd 3
fd 4 ~

29 From lecture-13.ppt

Open file table

[shared by all processes]

File A (terminal)

—

File pos
refcnt=1

\File B(is)

File pos
refcnt=1

v-node table

File access

File size

File type

File access

File size

File type

inode ptr]

[shared by all processes]

\

Info in
» stat

struct

15-213, F'08

Finally: walking thru a read()

= Intretcode =read(fd, buffer, size);

= Steps:

30

Index into fd table to get open file object

call vnode op_read(vnode, offset, buffer, size)
= calls into specific file system with associated inode (part of vnode)

Index into block list at offset/blocksize to find data’'s LBN
= may involve reading indirect blocks

grab ownership of buffer containing corresponding data
= check buffer cache first
= read from disk if not there

« Ask device driver to read it, which creates CDB and so forth
copy data from cache buffer to caller’s buffer
repeat last three steps until size reached

return to application
= update open file object’s offset on the way 15-213, F08

