15-213 "The course that gives CMU its Zip!"

Files Oct. 28, 2008

Topics

- Mapping file offsets to disk blocks
- File system buffering and you
- The directory hierarchy

Announcements

Exam Thursday

- style like exam #1: in class, open book/notes, no electronics
- class website has details and old exams

Reminder: Unix I/O

Key Features

- Elegant mapping of files to devices allows kernel to export simple interface called Unix I/O.
- Important idea: All input and output is handled in a consistent and uniform way.

Basic Unix I/O operations (system calls):

- Opening and closing files
 - open()and close()
- Reading and writing a file
 - read() and write()
- Changing the current file position (seek)
 - indicates next offset into file to read or write
 - Lseek ()

Reminder: Disk Structure

Reminder: Disk storage as array of blocks

OS's view of storage device (as exposed by SCSI or IDE/ATA protocols)

- Common "logical block" size: 512 bytes
- Number of blocks: device capacity / block size
- Common OS-to-storage requests defined by few fields
 - R/W, block #, # of blocks, memory source/dest

Mapping file offsets to disk LBNs

- Issue in question
 - need to keep track of which LBNs hold which file data
- Most trivial mapping: just remember start location
 - then keep entire file in contiguous LBNs
 - what happens when it grows?
 - alternately, include a "next pointer" in each "block"
 - how does one find location of a particular offset?
- Most common approach: block lists
 - an array with one LBN per block in the file
 - Note: file block size can exceed one logical (disk) block
 - so, groups of logical blocks get treated as a unit by file system
 - e.g., 8KB = 16 disk blocks (of 512 bytes each)

A common approach to recording a block list

Other per-file information must also be stored somewhere

Examples

- length of file
- owner
- access permissions
- last modification time

• ...

Reminder: File Metadata

- Metadata is data about data, in this case file data
- Per-file metadata maintained by kernel
 - accessed by users with the stat and fstat functions

```
/* Metadata returned by the stat and fstat functions */
struct stat {
                st dev;
                         /* device */
   dev t
                st ino;
                          /* inode */
   ino t
                st_mode; /* protection and file type */
   mode t
               st nlink; /* number of hard links */
   nlink t
               st_uid; /* user ID of owner */
   uid t
   gid t
               st_gid; /* group ID of owner */
   dev t
               st rdev; /* device type (if inode device) */
   off t
               st_size; /* total size, in bytes */
   unsigned long st_blksize; /* blocksize for filesystem I/O */
   unsigned long st_blocks; /* number of blocks allocated */
                st_atime; /* time of last access */
   time t
   time t st mtime; /* time of last modification */
               st ctime;
                          /* time of last change */
   time t
  From lecture-13.ppt
```

Other per-file information must also be stored somewhere

Examples

- length of file
- owner
- access permissions
- last modification time
- ...
- Usually kept together with the block list
 - In a structure called an "inode"

File block allocation

Two issues

- Keep track of which space is available
- When a new block is needed, pick one of the free ones

Malloc-like solution – free list

- maintain a linked list of free blocks
 - using space in unused blocks to store the pointers
- grab block from this list when a new block is needed
 - usually, the list is used as a stack
- while simple, this approach rarely yields good performance
 - why?

File block allocation (cont.)

- Most common approach a bitmap
 - Use a large array of bits, with one per allocatable unit
 - one value says "free" and the other says "in use"
 - Scan the array for a "free" setting, when we need a block
 - note: we don't have to just take first "free" block in array
 - we can look in particular regions or for particular patterns
 - In choosing an allocation, try to provide locality
 - e.g., second block should be right after first
 - e.g., first block should be near inode

Reminder: Reading Files

 Reading a file copies bytes from the current file position to memory, and then updates file position

- Returns number of bytes read from file fd into buf
 - Return type ssize_t is signed integer
 - nbytes < 0 indicates that an error occurred</p>
 - short counts (nbytes < sizeof(buf)) are possible and</p>

Managing file data in-kernel: buffers

Staging area between disk and processes

Block-based file buffer management

Note: large I/Os are more efficient

- Recall disk performance is location dependent
 - milliseconds to position read/write head
 - microseconds to read next sector (usually = next LBN)
- Small read()s/write()s sometimes perform very poorly
 - Process 1 read()s 4KB from file #1 and waits for disk I/O
 - Process 2 read()s 4KB from file #2 and waits for disk I/O
 - Process 1 continues and read()s next 4KB from file #1
 - Process 2 continues and read()s next 4KB from file #2
 - ...
 - Result: random-like performance instead of sequential
 - bandwidth achieved would double with 8KB reads

Naturally, OS keeps a buffer cache

- Disk I/O costs milliseconds
 - as compared to microseconds for in-memory access
 - so, cache in-kernel buffers from previous read()s
- Each non-free buffer often kept on a number of lists
 - overflow list associated with hash index
 - so that it can be found during read()
 - Least-Recently-Used list (or other importance tracking lists)
 - so that good choices can be made for replacement
 - vnode list
 - so that all buffers associated with a file can be found quickly
 - dirty block list
 - so that dirty buffers can be propagated to disk, when desired

17

Managing file data in the kernel: buffers

- Staging area between disk and processes
- Two parts of each "buffer"
 - header describing controls and buffer containing data

Write-back caching of file data

- We talked about buffered Unix I/O
 - wherein your printf()s might not show up right away
- This is different, but similar
 - that was in your application (library); this is in-kernel
- Most file systems use write-back caching
 - buffers in memory are updated on write()
 - so, contents handed off
 - will be sent to disk at some later point
 - e.g., "30 second sync"
 - or, when OS runs low on memory space
 - if system crashes before the disk writes...
 - the file updates disappear

19

Volatile main memory and caching

Cache (in main memory)

Disk contents

20 15-213, F'08

You can force the disk writes

- The fsync() operation
 - directs file system to write the specified file to disk
 - includes everything associated with that file
 - directory entries, inode/attributes, indirect blocks, and data

Reminder: Opening Files

 Opening a file informs the kernel that you are getting ready to access that file

```
int fd; /* file descriptor */
if ((fd = open("/etc/hosts", O_RDONLY)) < 0) {
   perror("open");
   exit(1);
}</pre>
```

- Returns a small identifying integer file descriptor
 - fd == -1 indicates that an error occurred
- Each process created by a Unix shell begins life with three open files associated with a terminal:
 - 0: standard input
 - 1: standard output
 - 22 2: standard error

Common approach to naming: directory hierarchy

- Hierarchies are a good way to deal with complexity
 - ... and data organization is a complex problem
- It works pretty well for moderate-sized data sets
 - easy to identify coarse breakdowns
 - whenever gets too big, split it and refine namespace
- Traversing the directory hierarchy

23

What's in a directory

- Directories to translate file names to inode IDs
 - just a special file with an array of formatted entries

often, sets of entries organized in sector-sized chunks

A directory block with three entries

A directory and two files

Managing namespace: mount/unmount

- One can have many FSs on many devices
 - ... but only one namespace
- So, one must combine the FSs into one namespace
 - starts with a "root file system"
 - the one that has to be there when the system boots
 - "mount" operation attaches one FS into the namespace
 - at a specific point in the overall namespace
 - "unmount" detaches a previously-attached file system

VIEW BEFORE MOUNTING

VIEW AFTER MOUNTING

27

Finally: walking thru an open()

- int fd = open("/foo/bar", RO);
- Steps:
 - translate file name to inode identifier
 - lookup "foo" in root directory
 - read directory "foo" contents
 - lookup "bar" in directory "foo"
 - use directory lookup cache first for each lookup step
 - create a vnode structure for inode
 - lookup inode in inode cache; fetch from disk if necessary
 - initialize vnode structure appropriately
 - create open file structure
 - initialize, pointing to new vnode
 - fill in fd table entry
 - pick unused entry in table; have it point to new open file structure

²⁸ return corresponding index into fd table

Reminder: How the Unix Kernel Represents Open Files

 Two descriptors referencing two distinct open disk files. Descriptor 1 (stdout) points to terminal, and descriptor 4 points to open disk file

Finally: walking thru a read()

- int retcode = read(fd, buffer, size);
- Steps:
 - index into fd table to get open file object
 - call vnode_op_read(vnode, offset, buffer, size)
 - calls into specific file system with associated inode (part of vnode)
 - index into block list at offset/blocksize to find data's LBN
 - may involve reading indirect blocks
 - grab ownership of buffer containing corresponding data
 - check buffer cache first
 - read from disk if not there
 - Ask device driver to read it, which creates CDB and so forth
 - copy data from cache buffer to caller's buffer
 - repeat last three steps until size reached
 - return to application
 - update open file object's offset on the way