
1

Files
Oct. 28, 2008

TopicsTopics
Mapping file offsets to disk blocks
File system buffering and you
The directory hierarchy

lecture-18.ppt

15-213
“The course that gives CMU its Zip!”

2 15-213, F’08

Announcements
Exam ThursdayExam Thursday

style like exam #1: in class, open book/notes, no electronics
class website has details and old exams

3 15-213, F’08

Reminder: Unix I/O
Key FeaturesKey Features

Elegant mapping of files to devices allows kernel to export
simple interface called Unix I/O.
Important idea: All input and output is handled in a
consistent and uniform way.

Basic Unix I/O operations (system calls): Basic Unix I/O operations (system calls):
Opening and closing files

open()and close()
Reading and writing a file

read() and write()
Changing the current file position (seek)

indicates next offset into file to read or write
Lseek ()

B0 B1 • • • Bk-1 Bk Bk+1 • • •

Current File Position = kFrom lecture-13.ppt 4 15-213, F’08

Reminder: Disk Structure

Read/Write Head

Upper Surface
Platter

Lower Surface

Cylinder

Track

Sector

Arm

Actuator

From lecture-17.ppt

2

5 15-213, F’08

Reminder: Disk storage as array of
blocks

OS’s view of storage device
(as exposed by SCSI or IDE/ATA protocols)

Common Common ““logical blocklogical block”” size: 512 bytessize: 512 bytes

Number of blocks: device capacity / block sizeNumber of blocks: device capacity / block size

Common OSCommon OS--toto--storage requests defined by few fieldsstorage requests defined by few fields
R/W, block #, # of blocks, memory source/dest

65 7 12 23 ……

From lecture-17.ppt 6 15-213, F’08

Mapping file offsets to disk LBNs
Issue in questionIssue in question

need to keep track of which LBNs hold which file data

Most trivial mapping: just remember start locationMost trivial mapping: just remember start location
then keep entire file in contiguous LBNs

what happens when it grows?
alternately, include a “next pointer” in each “block”

how does one find location of a particular offset?

Most common approach: block listsMost common approach: block lists
an array with one LBN per block in the file
Note: file block size can exceed one logical (disk) block

so, groups of logical blocks get treated as a unit by file system
e.g., 8KB = 16 disk blocks (of 512 bytes each)

7 15-213, F’08

Direct Block 1

Indirect Block

Double-Indirect
Block Indirect Block 1

. . .

Direct Block 2
Data (lbn 344)

Data (lbn 576)

Direct Block 12
Data (lbn 968)

. . .

(lbn 632)
Data Block 13

Data

(lbn 1944)

(lbn 480)

Data Block 14

Data Block N
. . . Data

Data

(lbn 72). . .

Indirect Block 2
Data Block Q+1

Data

(lbn 96)
Data Block N+1

Data

(lbn 176)

Data Block N+2
. . . Data

A common approach to recording a block list

8 15-213, F’08

Other per-file information must
also be stored somewhere

ExamplesExamples
length of file
owner
access permissions
last modification time
…

3

9 15-213, F’08

Reminder: File Metadata
MetadataMetadata is data about data, in this case file datais data about data, in this case file data

PerPer--file metadata maintained by kernelfile metadata maintained by kernel
accessed by users with the stat and fstat functions

/* Metadata returned by the stat and fstat functions */
struct stat {

dev_t st_dev; /* device */
ino_t st_ino; /* inode */
mode_t st_mode; /* protection and file type */
nlink_t st_nlink; /* number of hard links */
uid_t st_uid; /* user ID of owner */
gid_t st_gid; /* group ID of owner */
dev_t st_rdev; /* device type (if inode device) */
off_t st_size; /* total size, in bytes */
unsigned long st_blksize; /* blocksize for filesystem I/O */
unsigned long st_blocks; /* number of blocks allocated */
time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last change */

};
From lecture-13.ppt 10 15-213, F’08

Other per-file information must
also be stored somewhere

ExamplesExamples
length of file
owner
access permissions
last modification time
…

Usually kept together with the block listUsually kept together with the block list
In a structure called an “inode”

11 15-213, F’08

File block allocation
Two issuesTwo issues

Keep track of which space is available
When a new block is needed, pick one of the free ones

MallocMalloc--like solution like solution –– free listfree list
maintain a linked list of free blocks

using space in unused blocks to store the pointers
grab block from this list when a new block is needed

usually, the list is used as a stack
while simple, this approach rarely yields good performance

why?

12 15-213, F’08

File block allocation (cont.)
Most common approach Most common approach –– a bitmapa bitmap

Use a large array of bits, with one per allocatable unit
one value says “free” and the other says “in use”

Scan the array for a “free” setting, when we need a block
note: we don’t have to just take first “free” block in array
we can look in particular regions or for particular patterns

In choosing an allocation, try to provide locality
e.g., second block should be right after first
e.g., first block should be near inode

4

13 15-213, F’08

Reminder: Reading
Files

Reading a file copies bytes from the current file Reading a file copies bytes from the current file
position to memory, and then updates file positionposition to memory, and then updates file position

Returns number of bytes read from file Returns number of bytes read from file fdfd into into bufbuf
Return type ssize_t is signed integer
nbytes < 0 indicates that an error occurred
short counts (nbytes < sizeof(buf)) are possible and
are not errors!

char buf[512];
int fd; /* file descriptor */
int nbytes; /* number of bytes read */

/* Open file fd ... */
/* Then read up to 512 bytes from file fd */
if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {

perror("read");
exit(1);

}

14 15-213, F’08

Managing file data in-kernel:
buffers

Staging area between disk and processesStaging area between disk and processes

15 15-213, F’08

#90256

#32216

#11948

#51876

cnt

buffer:

logical file:

system buffers: 0 1 2 3

disk:

1: 2:

0:

3:

user: read(fd, buffer, cnt);

Block-based file buffer management

16 15-213, F’08

Note: large I/Os are more
efficient

Recall disk performance is location dependentRecall disk performance is location dependent
milliseconds to position read/write head
microseconds to read next sector (usually = next LBN)

Small Small read()s/write()sread()s/write()s sometimes perform very poorlysometimes perform very poorly
Process 1 read()s 4KB from file #1 and waits for disk I/O
Process 2 read()s 4KB from file #2 and waits for disk I/O
Process 1 continues and read()s next 4KB from file #1
Process 2 continues and read()s next 4KB from file #2
…
Result: random-like performance instead of sequential

bandwidth achieved would double with 8KB reads

5

17 15-213, F’08

Naturally, OS keeps a buffer
cache

Disk I/O costs millisecondsDisk I/O costs milliseconds
as compared to microseconds for in-memory access
so, cache in-kernel buffers from previous read()s

Each nonEach non--free buffer often kept on a number of listsfree buffer often kept on a number of lists
overflow list associated with hash index

so that it can be found during read()
Least-Recently-Used list (or other importance tracking lists)

so that good choices can be made for replacement
vnode list

so that all buffers associated with a file can be found quickly
dirty block list

so that dirty buffers can be propagated to disk, when desired

18 15-213, F’08

Managing file data in the kernel:
buffers

Staging area between disk and processesStaging area between disk and processes

Two parts of each Two parts of each ““bufferbuffer””
header describing controls and buffer containing data

(8 Kbyte)
BLOCKSIZE

buffer contentsbuffer header

hash links

free-list links

lru-list links

vnode pointer

file offset

byte count

flags

buffer pointer

19 15-213, F’08

Write-back caching of file data
We talked about buffered Unix I/OWe talked about buffered Unix I/O

wherein your printf()s might not show up right away

This is different, but similarThis is different, but similar
that was in your application (library); this is in-kernel

Most file systems use writeMost file systems use write--back cachingback caching
buffers in memory are updated on write()

so, contents handed off
will be sent to disk at some later point

e.g., “30 second sync”
or, when OS runs low on memory space

if system crashes before the disk writes…
the file updates disappear

20 15-213, F’08

Volatile main memory and
caching

Cache (in main memory)
Disk contents

6

21 15-213, F’08

You can force the disk writes
The The fsyncfsync()() operationoperation

directs file system to write the specified file to disk
includes everything associated with that file

directory entries, inode/attributes, indirect blocks, and data

22 15-213, F’08

Reminder: Opening
Files

Opening a file informs the kernel that you are getting Opening a file informs the kernel that you are getting
ready to access that fileready to access that file

Returns a small identifying integer Returns a small identifying integer file descriptorfile descriptor
fd == -1 indicates that an error occurred

Each process created by a Unix shell begins life with Each process created by a Unix shell begins life with
three open files associated with a terminal:three open files associated with a terminal:

0: standard input
1: standard output
2: standard error

int fd; /* file descriptor */

if ((fd = open("/etc/hosts", O_RDONLY)) < 0) {
perror("open");
exit(1);

}

23 15-213, F’08

Common approach to naming:
directory hierarchy

Hierarchies are a good way to deal with complexityHierarchies are a good way to deal with complexity
… and data organization is a complex problem

It works pretty well for moderateIt works pretty well for moderate--sized data setssized data sets
easy to identify coarse breakdowns
whenever gets too big, split it and refine namespace

Traversing the directory hierarchyTraversing the directory hierarchy
the ‘.’ and ‘..’ entries

/

dirc

wow

dira dirb

F/S

filedirectories

24 15-213, F’08

What’s in a directory
Directories to translate file names to Directories to translate file names to inodeinode IDsIDs

just a special file with an array of formatted entries

often, sets of entries organized in sector-sized chunks

4 bytes 2 bytes 2 bytes variable length
N
U
L
L

Inode
number

Record
length

Length
of name File Name (max. 255 characters)

FILE 5 foo.c # DIR 3 bar # DIR 6 mumble

A directory block with three entries

7

25 15-213, F’08

A directory and two files

Directory

<A, 3>

< , >

Data Blocks

DATA

Block #20

Inodes

Inode #3

Various
Information

Block #20

DATA

DATA

Block #42

Block #44

<B, 5>

Inode #5

Various
Information

Block #42
Block #44

26 15-213, F’08

Managing namespace:
mount/unmount

One can have many One can have many FSsFSs on many deviceson many devices
… but only one namespace

So, one must combine the So, one must combine the FSsFSs into one namespaceinto one namespace
starts with a “root file system”

the one that has to be there when the system boots
“mount” operation attaches one FS into the namespace

at a specific point in the overall namespace
“unmount” detaches a previously-attached file system

27 15-213, F’08

VIEW BEFORE MOUNTING

VIEW AFTER MOUNTING

/

tomd

dirc

wow

dira dirb

Namespace

directory

filesub-directories

/

tomd

Root FS

directory /

dirc

wow

dira dirb

FS

filedirectories

28 15-213, F’08

Finally: walking thru an open()
intint fdfd = open(= open(““//foofoo/bar/bar””, RO);, RO);

Steps:Steps:
translate file name to inode identifier

lookup “foo” in root directory
read directory “foo” contents
lookup “bar” in directory “foo”
use directory lookup cache first for each lookup step

create a vnode structure for inode
lookup inode in inode cache; fetch from disk if necessary
initialize vnode structure appropriately

create open file structure
initialize, pointing to new vnode

fill in fd table entry
pick unused entry in table; have it point to new open file
structure

return corresponding index into fd table

8

29 15-213, F’08

Reminder: How the Unix Kernel
Represents Open Files

Two descriptors referencing two distinct open disk Two descriptors referencing two distinct open disk
files. Descriptor 1 (files. Descriptor 1 (stdoutstdout) points to terminal, and) points to terminal, and
descriptor 4 points to open disk filedescriptor 4 points to open disk file

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos
refcnt=1

...

File pos
refcnt=1

...

stderr
stdout
stdin File access

...

File size
File type

File access

...

File size
File type

File A (terminal)

File B (disk)

Info in
stat
struct

inode ptrFrom lecture-13.ppt 30 15-213, F’08

Finally: walking thru a read()
intint retcoderetcode = = read(fdread(fd, buffer, size);, buffer, size);

Steps:Steps:
index into fd table to get open file object
call vnode_op_read(vnode, offset, buffer, size)

calls into specific file system with associated inode (part of vnode)
index into block list at offset/blocksize to find data’s LBN

may involve reading indirect blocks
grab ownership of buffer containing corresponding data

check buffer cache first
read from disk if not there

Ask device driver to read it, which creates CDB and so forth
copy data from cache buffer to caller’s buffer
repeat last three steps until size reached
return to application

update open file object’s offset on the way

