15-213

“The course that gives CMU its Zip!”

System-Level I/O
October 9, 2008

Topics
= Unix I/O
m Robust reading and writing
m Reading file metadata
m Sharing files
m |/O redirection
m Standard I/O

lecture-13.ppt

Unix Files

A Unix file is a sequence of m bytes:
m By, By, ..., By, o, By

All 1/0O devices are represented as files:

m /dev/sda2 (/usr disk partition)
m /dev/tty2 (terminal)

Even the kernel is represented as a file:

m /dev/kmem (kernel memory image)
m /proc (kernel data structures)

15-213, F08

Page 1

Announcements

Final exam day/time announced (by CMU)
m 8:30-11:30am on Friday, December 12

Cheating... please, please don't
= Writing code together counts as “sharing code” —forbidden
m “Pair programming”, even w/o looking at other’s code — forbidden
e describing code line by line counts the same as sharing code
= Opening up code and then leaving it for someone to enjoy — forbidden
e in fact, please remember to use protected directories and screen locking
m Talking through a problem can include pictures (not code) — ok

m The automated tools for discovering cheating are incredibly good
® ... please don’t test them

m Everyone has been warned multiple times
e cheating on the remaining labs will receive no mercy

—2- 15-213, F08

Unix File Types

Regular file
m File containing user/app data (binary, text, whatever)
m OS does not know anything about the format
e other than “sequence of bytes”, akin to main memory
Directory file
m A file that contains the names and locations of other files

Character special and block special files

m Terminals (character special) and disks ( block special)
FIFO (named pipe)

m A file type used for inter-process communication
Socket

m A file type used for network comm. between processes

—-4- 15-213, F08




Unix 1/O

Key Features
m Elegant mapping of files to devices allows kernel to export
simple interface called Unix I/O.
m Important idea: All input and output is handled in a
consistent and uniform way.

Basic Unix I/O operations (system calls):
m Opening and closing files
e open()and close()
m Reading and writing a file
® read() and write()
m Changing the current file position (seek)
e indicates next offset into file to read or write
e Lseek O

Elo] — Flepd -

-5- Current File Position = k 15-213, F'08

Closing Files

Closing a file informs the kernel that you are finished
accessing that file

int fd; /* file descriptor */
int retval; /* return value */

if ((retval = close(fd)) < 0) {
perror(‘‘close™);
exit(1);

3

Closing an already closed file is a recipe for disaster in
threaded programs (more on this later)

Moral: Always check return codes, even for seemingly
benign functions such as close()

15-213, F08

Page 2

—6—

Opening Files

Opening a file informs the kernel that you are getting
ready to access that file

int fd; /* file descriptor */

if ((fd = open(*/etc/hosts™, O_RDONLY)) < 0) {
perror(*open™);
exit(l);

3

Returns a small identifying integer file descriptor
m fd == -1lindicates that an error occurred

Each process created by a Unix shell begins life with
three open files associated with a terminal:
m 0: standard input
m 1: standard output

m 2: standard error 15-213, F'08

Reading Files

Reading afile copies bytes from the current file
position to memory, and then updates file position

char buf[512];

int fd; /* fTile descriptor */
int nbytes; /* number of bytes read */
/* Open file fd ... */

/* Then read up to 512 bytes from file fd */

if ((nbytes = read(fd, buf, sizeof(buf))) < 0) {
perror(‘'read™);
exit(l);

3

Returns number of bytes read from file fd into buf
m Return type ssize_t is signed integer
m nbytes < 0Oindicates that an error occurred

m short counts (nbytes < sizeof(buf) ) are possible and
_g_ arenoterrors! 15-213, F08




Writing Files

Writing a file copies bytes from memory to the current file
position, and then updates current file position

char buf[512];
int fd;
int nbytes;

/* file descriptor */
/* number of bytes read */

/* Open the file fd ... */
/* Then write up to 512 bytes from buf to file fd */
if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {
perror('write');
exit(l);

}
Returns number of bytes written from buf to file fd

m nbytes < Oindicates that an error occurred

m As with reads, short counts are possible and are not errors!

-9- 15-213, F08

File Metadata

Metadata is data about data, in this case file data

Per-file metadata maintained by kernel
= accessed by users with the stat and fstat functions

/* Metadata returned by the stat and fstat functions */
struct stat {

dev_t st_dev; /* device */

ino_t st_ino; /* inode */

mode_t st_mode; /* protection and file type */
nlink_t st_nlink; /* number of hard links */

uid_t st_uid; /* user ID of owner */

gid_t st_gid; /* group 1D of owner */

dev_t st_rdev; /* device type (if inode device) */
off t st_size; /* total size, in bytes */

unsigned long st _blksize; /* blocksize for filesystem 1/0 */
unsigned long st_blocks; /* number of blocks allocated */

time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last change */

Page 3

Simple Unix I/O example

Copying standard in to standard out, one byte at a time

int main(void)

char c;
int len;

while ((len = read(0 /*stdin*/, &, 1)) == 1) {
if (write(1 /*stdout*/, &c, 1) != 1) {
exit(20);

3

if (len < 0) {
printf (“read from stdin failed”);
exit (10);

exit(0);

_10- 15-213, F'08

Example of Accessing File Metadata

/* statcheck.c - Querying and manipulating a file’s meta data */
#include ‘‘csapp.h"

unix> ./statcheck statcheck.c
type: regular, read: yes
unix> chmod 000 statcheck.c
unix> ./statcheck statcheck.c
type: regular, read: no

unix> ./statcheck ..

type: directory, read: yes
unix> ./statcheck /dev/kmem
type: other, read: yes

int main (int argc, char **argv)

struct stat stat;
char *type, *readok;

Stat(argv[1l], &stat);

if (S_ISREG(stat.st_mode))
type = “regular”;

else if (S_ISDIR(stat.st_mode))

type = "directory";
else
type = “other";
if ((stat.st_mode & S_IRUSR)) /* OK to read?*/
readok = "yes";
else
readok = "no";

printf("type: %s, read: %s\n", type, readok);
exit(0);

_12_ 15-213, F'08




Repeated slide: Opening Files

Opening a file informs the kernel that you are getting
ready to access that file

int fd; /* file descriptor */

if ((fd = open(*'/etc/hosts", O_RDONLY)) < 0) {
perror(*‘open'™);
exit(l);

3

Returns a small identifying integer file descriptor
m fd == -1lindicates that an error occurred

Each process created by a Unix shell begins life with
three open files associated with a terminal:
m 0: standard input (stdin)
m 1: standard output (stdout)

_13_ ® 2: standard error (stderr) 15-213, F08

File Sharing

Two distinct descriptors sharing the same disk file
through two distinct open file table entries
m E.g., Calling open twice with the same filename argument

v-node table
(shared by
all processes)

Open file table
(shared by
all processes)

Descriptor table
(one table
per process)

File A
fd 0 - File access
:g ; File pos File size
fd3 refcnt=1 File type
fd 4 ~ : 8
\ File B
File pos
refcnt=1
— 15— B 15-213, F'08

Page 4

How the Unix Kernel Represents
Open Files
Two descriptors referencing two distinct open disk

files. Descriptor 1 (stdout) points to terminal, and
descriptor 4 points to open disk file

Open file table v-node table
[shared by all processes] [shared by all processes]

Descriptor table
[one table per process]

File A (terminal)

stdin fd 0 = File access
stdout fd 1 — n i i Info i
File size nfo in
stderr fd 2 GRS - stat
fd3 refcnt=1 File type struct
fd 4 ~ : g
File B (disk .
i_— File access
File pos F_lle size
refcnt=1 File type
_14- : 15-213, F08

How Processes Share Files

A child process inherits its parent’s open files
= Note: situation unchanged by exec() functions

Before fork() call

Descriptor Open file table v-node table
tables (shared by (shared by
all processes) all processes)
Parent's table Eile A
fd 0 = File access|
fd1 1 i File size
fd 2 File pos [
fd 3 refcnt=1 File type
fd 4 ~ : 8
File B =
File access|
File pos F.|Ie size
refcnt=1 File type
_16- : 15-213, F'08




Parent and child file sharing after fork()

A child process inherits its parent’s open files
= Child’s table same as parents, and +1 to each refcnt
= Note: situation unchanged by exec() functions

Descriptor Open file table v-node table
tables (shared by (shared by
all processes) all processes)
Parent's table File A
fd 0 = File access|
IS ; File pos File size
d3 refcnt=2 File type
fd 4 ~ : g
Child's tabl

File B -
L— File access

fd 0 - -
fd 1 File pos File size
IS g refcnt=2 File type

g7 fd4 : 15.213, F08

I/O Redirection

Question: How does a shell implement I/O redirection?
unix> Is > foo.txt

Answer: By calling the dup2(oldfd, newfd) function
m Copies (per-process) descriptor table entry oldfd to entry newfd

Descriptor table Descriptor table

before dup2(4,1) after dup2(4,1)
fd 0 fd 0
fd 1 a fd 1 b
2 —
fd 3 fd 3
fd 4 b fd 4 b

_18- 15-213, F'08

I/O Redirection example

Step #1: open file to which stdout should be redirected
= Happens in child executing shell code, before exec()

Descriptor table Open file table v-node table
(one table (shared by (shared by
per process) all processes) all processes)
File A
stdin fd 0 — File access|
stdout fd 1 — " " N
stderr fd 2 File pos F_lle size
fd 3 refcnt=1 File type
fd 4 ~ g :
File B "
File access|
File pos F_lle size
refcnt=1 File type
_19- - 15-213, F08

I/O Redirection Example (cont)

Step #2: call dup2(4,1)
= cause fd=1 (stdout) to refer to disk file pointed at by fd=4

Descriptor table Open file table v-node table
(one table (shared by (shared by
per process) all processes) all processes)

ep e

File access

fdo I
fd1 ! File size |
fd 2 —
fd 3
fd 4 ' : !
File access
File pos F_|Ie size
refcnt=2 File type
_20- 15-213, F'08




Standard 1/O Functions

The C standard library (libc.a) contains a collection of
higher-level standard 1/O functions
m Documented in Appendix B of K&R.

Examples of standard I/O functions:
m Opening and closing files (Fopen and fclose)
m Reading and writing bytes (fread and fwrite)
m Reading and writing text lines (fgets and fputs)
m Formatted reading and writing (fscanf and fprintf)

_o1- 15-213, F'08

Buffering in Standard /O

Standard I/O functions use buffered 1/0

printf(*h™);
printf(e™);
printf("I1™);
printf("I™);
printf(*"o™);
printf(''\n");

buf
[

hlelTTiTolWwl . T 1]

fflush(stdout);

write(1l, buf += 6, 6);

Buffer flushed to output fd on “\n” or fflush() call

—23- 15-213,F08

Page 6

Standard /O Streams

Standard 1/0 models open files as streams
m Abstraction for a file descriptor and a buffer in memory.
m Similar to buffered RIO

C programs begin life with three open streams (defined
in stdio.h)

m stdin (standard input)
m stdout (standard output)

m stderr (standard error)

#include <stdio.h>

extern FILE *stdin; /* standard input (descriptor 0) */
extern FILE *stdout; /* standard output (descriptor 1) */
extern FILE *stderr; /* standard error (descriptor 2) */

int mainQ) {
fprintf(stdout, "“Hello, world\n™);

oo 15-213, F'08

Standard I/O Buffering in Action

You can see this buffering in action for yourself, using
the always fascinating Unix strace program:

#include <stdio.h>

int mainQ)

{

printf(’h
printf(‘e’
printf('l"
printf(l"
printf(o’
printf('\n");

Fflush(stdout);

linux> strace ./hello
execve("'./hello”, [“hello™], [/* ... */])-

write(1, "hello\n", 6...

PH
s
s
pH b) =6
s

“exit(0) -7

exit(0);

—-24- 15-213, F08




Fork Example #2 (Original)

Key Points
m Both parent and child can continue forking

void fork2()

{
printf(*'LO\n™); B
forkQ; L T
printf('L1\n"); ye
fork(Q); Bye
printf(*'Bye\n"); Lo L1 [ Bye

}

_25 15-213, F'08

~ From lecture-13.ppt

Repeated slide: Reading Files

Reading afile copies bytes from the current file
position to memory, and then updates file position

char buf[512];
int fd; /* file descriptor */
int nbytes; /* number of bytes read */

/* Open file fd ... */

/* Then read up to 512 bytes from file fd */

iT ((nbytes = read(fd, buf, sizeof(buf))) < 0) {
perror(*'read™);
exit(l);

3

Returns number of bytes read from file fd into buf
m Return type ssize_t s signed integer
m nbytes < Oindicates that an error occurred.

m short counts (nbytes < sizeof(buf) ) are possible and
_,7_ arenoterrors! 15-213, F08

Page 7

Fork Example #2 (modified)

Removed the “\n” from the first printf
m As aresult, “L0” gets printed twice

void fork2a()

printf('LO™); B
ye

fork(Q);
printf('L1\n"); Lot [ Bye
forkQ); Bye
printf(*'Bye\n"); LOL1 | Bye

3

_26- 15-213, F'08

Dealing with Short Counts

Short counts can occur in these situations:
m Encountering (end-of-file) EOF on reads
m Reading text lines from a terminal
m Reading and writing network sockets or Unix pipes

Short counts never occur in these situations:
m Reading from disk files (except for EOF)
m Writing to disk files

One way to deal with short counts in your code:

m Use the RIO (Robust I/O) package from your textbook’s
csapp-c file (Appendix B)

_og_ 15-213, F'08




The RIO Package

RIO is a set of wrappers that provide efficient and robust 1/O in apps,
such as network programs that are subject to short counts

RIO provides two different kinds of functions
m Unbuffered input and output of binary data
e rio_readnand rio_writen
m Buffered input of binary data and text lines
e rio_readlineband rio_readnb

e Buffered RIO routines are thread-safe and can be interleaved arbitrarily on
the same descriptor

Download from
csapp-cs.cmu.edu/public/ics/code/src/csapp.-c
csapp-cs.cmu.edu/public/ics/code/include/csapp.h

_29_ 15-213, F'08

Implementation of rio_readn

/*

* rio_readn - robustly read n bytes (unbuffered)
*

/

ssize_t rio_readn(int fd, void *usrbuf, size_t n)

size_t nleft = n;
ssize_t nread;
char *bufp = usrbuf;

while (nleft > 0) {
if ((nread = read(fd, bufp, nleft)) < 0) {
if (errno == EINTR) /* interrupted by sig
handler return */

nread = 0; /* and call read() again */
else
return -1; /* errno set by read() */

else if (nread == 0)
break;

nleft -= nread;

bufp += nread;

/* EOF */

return (n - nleft); /* return >= 0 */

_31_ 15-213, F'08

Page 8

Unbuffered RIO Input and Output

Same interface as Unix read and write

Especially useful for transferring data on network sockets

#include “csapp.h*

ssize_t rio_readn(int fd, void *usrbuf, size_t n);
ssize_t rio_writen(int fd, void *usrbuf, size_t n);

Return: num. bytes transferred if OK, 0 on EOF (rio_readn only), -1 on error

m rio_readn returns short count only it encounters EOF.
® Only use it when you know how many bytes to read
m rio_writen never returns a short count.
m Calls to rio_readn and rio_writen can be interleaved
arbitrarily on the same descriptor.

_30- 15-213, F'08

Buffered I/O: Motivation

I/O Applications Read/Write One Character at a Time
m getc, putc, ungetc
m gets
® Read line of text, stopping at newline

Implementing as Calls to Unix I1/0 Expensive

m Read & Write involve require Unix kernel calls
® > 10,000 clock cycles

Buffer

already read unread

Buffered Read
m Use Unix read to grab block of bytes
m User input functions take one byte at a time from buffer

_32- o Refill buffer when empty 15-213, F'08




Buffered I/O: Implementation

m For reading from file

m File has associated buffer to hold bytes that have been read
from file but not yet read by user code

Buffer |<— rio_cnt —-|

| already read

rio_buf —/ _
rio_bufptr
Layered on Unix File

fp——

| unread |

Buffered Portion

—

not in buffer | already read | unread unseen

Current File Position -/

_33_ 15-213, F'08

Buffered RIO Input Functions

Efficiently read text lines and binary data from a file
partially cached in an internal memory buffer

#include “csapp.-h"
void rio_readinitb(rio_t *rp, int fd);
ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);

Return: num. bytes read if OK, 0 on EOF, -1 on error

m rio_readlineb reads atext line of up to maxlen bytes from
file fd and stores the line in usrbuf
® Especially useful for reading text lines from network sockets
m Stopping conditions
o maxlen bytes read
® EOF encountered
® Newline ("\n’) encountered

_35_ 15-213, F'08

Page 9

Buffered 1/O: Declaration

m All information contained in struct

Buffer |~— rio_cnt —.|

| already read | unread |
rio_buf —/ _
rio_bufptr
typedef struct {
int rio_fd; /* descriptor for this internal buf */
int rio_cnt; /* unread bytes in internal buf */
char *rio_bufptr; /* next unread byte in internal buf */
char rio_buf[RIO_BUFSIZE]; /* internal buffer */
} rio_t;
-34- 15-213, F08

Buffered RIO Input Functions (cont)

#include "csapp.-h"

void rio_readinitb(rio_t *rp, int fd);

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);
ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);

Return: num. bytes read if OK, 0 on EOF, -1 on error

m rio_readnb reads up to n bytes from file fd
m Stopping conditions

e maxlen bytes read

® EOF encountered
m Calls to rio_readlineb and rio_readnb can be interleaved

arbitrarily on the same descriptor
e Warning: Don’t interleave with calls to rio_readn

_36- 15-213, F'08




RIO Example

Copying the lines of a text file from standard input to
standard output

#include "csapp.-h"
int main(int argc, char **argv)

int n;
rio_t rio;
char buf[MAXLINE];

Rio_readinitb(&rio, STDIN_FILENO);

while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0)
Rio_writen(STDOUT_FILENO, buf, n);

exit(0);

_37_ 15-213, F'08

For Further Information

The Unix bible:

m W. Richard Stevens & Stephen A. Rago, Advanced
Programming in the Unix Environment, 2"d Edition, Addison
Wesley, 2005

® Updated from Stevens’ 1993 book

Stevens is arguably the best technical writer ever.

m Produced authoritative works in:
® Unix programming
® TCP/IP (the protocol that makes the Internet work)
® Unix network programming
® Unix IPC programming

Tragically, Stevens died Sept 1, 1999
m But others have taken up his legacy

_39_ 15-213, F'08

Page 10

Choosing I/O Functions

General rule: use the highest-level I/O functions you can

m Many C programmers are able to do all of their work using the
standard 1/O functions

When to use standard I/O
m When working with disk or terminal files

When to use raw Unix I/O
m When you need to fetch file metadata
m In rare cases when you need absolute highest performance

When to use RIO
m When you are reading and writing network sockets or pipes
m Never use standard 1/O or raw Unix I/O on sockets or pipes

_3g_ 15-213, F'08

Fun with File Descriptors (1)

#include “‘csapp.h"
int main(int argc, char *argv[])

int fdi1, fd2, fd3;

char c1, c2, c3;

char *fname = argv[1];

fd1i Open(fname, O_RDONLY, 0);
fd2 Open(fname, O_RDONLY, 0);
fd3 = Open(fname, O_RDONLY, 0);
Dup2(fd2, fd3);

Read(fdl, &cl, 1);

Read(fd2, &c2, 1);

Read(fd3, &c3, 1);

printf(*'cl = %c, c2 = %c, c3 = %c\n", cl, c2, c3);
return O;

}

m What would this program print for file containing “abcde”?

—-40- 15-213, F08




Fun with File Descriptors (2)

#include "csapp-h"
int main(int argc, char *argv[])

int fdi;
int s = getpid() & Ox1;
char cl1, c2;
char *fname = argv[1];
fdl = Open(fname, O_RDONLY, 0);
Read(fd1, &cl, 1);
if (forkQ) {
/* Parent */
sleep(s);
Read(fdl, &c2, 1);
printf(**Parent: cl = %c, c2 = %c\n", cl, c2);
} else {
/* Child */
sleep(1-s);
Read(fdl, &c2, 1);
printf(*Child: cl = %c, c2 = %c\n", cl, c2);

return O;

m What would this program print for file containing “abcde”?
41— 15-213, F'08

Accessing Directories

The only recommended operation on a directory is to
read its entries
m dirent structure contains information about a directory entry

m DIR structure contains information about directory while
stepping through its entries

#include <sys/types.h>
#include <dirent_h>

{

DIR *directory;
struct dirent *de;

i%-(!(directory = opendir(dir_name)))
error(“Failed to open directory™);

while (0 != (de = readdir(directory))) {
printf(""Found file: %s\n", de->d_name);

closedir(directory);
_43- 3} 15-213, F'08

Page 11

Fun with File Descriptors (3)

#include "csapp-h"
int main(int argc, char *argv[])

int fd1, fd2, fd3;
char *fname = argv[1];

Write(fdl, “pqrs", 4);

fd3 = Open(fname, O_APPEND|O_WRONLY, 0);
Write(fd3, "jkimn", 5);

fd2 = dup(fdl); /* Allocates descriptor */
Write(fd2, "wxyz", 4);

Write(fd3, "ef", 2);

fd1l = Open(fname, O_CREAT]O_TRUNC]O_RDWR, S_IRUSR|S_IWUSR);

return O;
}
m What would be contents of resulting file?
42— 15-213, F'08
Unix I/O Key Characteristics
Classic Unix/Linux I/O: Mainframe 1/O:
1/0 operates on linear streams 1/0 operates on structured
of Bytes records
m Can reposition insertion m Functions to locate, insert,
point and extend file at end remove, update records
1/0 tends to be synchronous 1/0 tends to be asynchronous
= Read or write operation m Overlap I/0O and computation
block until data has been within a process
t ferred .
ransterre Coarse grained 1/0
Fine grained I/0O m Process writes “channel
m One key-stroke at a time programs” to be executed
= Each I/O event is handled by by the I/O hardware
the kernel and an = Many I/O operations are
appropriate process performed autonomously
with one interrupt at
completion 15-213, F08

— 44 —




Unix I/O vs. Standard 1/O vs. RIO

Standard 1/0 and RIO are implemented using low-level
Unix I/O.

fopen fdopen
fread fwrite
fscanf fprintf
sscanf sprintf |»

C application program

fgets fputs rio_readn
fflush fseek X

fclose

rio_writen
Stfirrzc(j:?irc?nzo f nRtIion (-~ rio_readinith
Slis I rio_readlineb

Unix I/O functions rio_readnb

open read

write [Iseek [«----

stat close (accessed via system calls)

Which ones should you use in your programs?

— 45— 15-213, F08

Pros and Cons of Standard |/O

Pros:
m Buffering increases efficiency by decreasing the number of
read and write system calls

m Short counts are handled automatically

Cons:
m Provides no function for accessing file metadata
m Standard /O is not appropriate for input and output on
network sockets
m There are poorly documented restrictions on streams that
interact badly with restrictions on sockets

—47 - 15-213,F08

Page 12

Pros and Cons of Unix I/O

Pros
m Unix I/O is the most general and lowest overhead form of 1/O.
® All other 1/0O packages are implemented using Unix I/O
functions.
m Unix I/O provides functions for accessing file metadata.

Cons
m Dealing with short counts is tricky and error prone.
m Efficient reading of text lines requires some form of
buffering, also tricky and error prone.
m Both of these issues are addressed by the standard 1/0O and
RIO packages.

46— 15-213, F08
Working with Binary Files
Binary File Examples
m Object code
m Images (JPEG, GIF)
m Arbitrary byte values
Functions you shouldn’'t use
m Line-oriented I/O
e fgets, scanf, printf, rio_readlineb
» use rio_readn or rio_readnb instead
® Interprets byte value 0x0A (\n’) as special
m String functions
® strlen, strcpy
® Interprets byte value 0 as special
15-213, F08

— 48—




Java l/O

Standard Java Streams are Unbuffered
m Every read/write call invokes OS
m Preferable to “wrap” stream with buffered stream

Java Distinguishes Characters from Bytes

m Characters: Various encodings to allow more than ASCII
characters

BufferedReader in =

new BufferedReader(new FileReader(‘'char-in.txt"));
BufferedWriter out =

new BufferedWriter(new FileWriter(‘'char-out.txt™));

m Bytes: Always 8 bits. Used for binary data

BufferedInputStream in =

new BufferedlnputStream(new FilelnputStream(“binary-in.txt"));
BufferedOutputStream out =

new BufferedOutputStream(new FileOutputStream(’binary-out.txt™));

— 49— 15-213, F08

Page 13



