
Page 1

Exceptional Control Flow
Part II

October 7, 2008

Exceptional Control Flow
Part II

October 7, 2008
TopicsTopics

Process Hierarchy
Shells
Signals
Nonlocal jumps

lecture-12.ppt

15-213
“The course that gives CMU its Zip!”

– 2 – 15-213, F’08

ECF Exists at All Levels of a SystemECF Exists at All Levels of a System
ExceptionsExceptions

Hardware and operating system kernel
software

Concurrent processesConcurrent processes
Hardware timer and kernel software

SignalsSignals
Kernel software

NonNon--local jumpslocal jumps
Application code

Previous Lecture

This Lecture

– 3 – 15-213, F’08

The World of MultitaskingThe World of Multitasking
System Runs Many Processes ConcurrentlySystem Runs Many Processes Concurrently

Process: executing program
State includes memory image + register values + program counter

Regularly switches from one process to another
Suspend process when it needs I/O resource or timer event occurs
Resume process when I/O available or given scheduling priority

Appears to user(s) as if all processes executing simultaneously
Even though most systems can only execute one process at a time
Except possibly with lower performance than if running alone

– 4 – 15-213, F’08

Programmer’s Model of MultitaskingProgrammer’s Model of Multitasking
Basic FunctionsBasic Functions

fork() spawns new process
Called once, returns twice

exit() terminates own process
Called once, never returns
Puts it into “zombie” status

wait() and waitpid() wait for and reap terminated children
execl() and execve() run new program in existing process

Called once, (normally) never returns

Programming ChallengeProgramming Challenge
Understanding the nonstandard semantics of the functions
Avoiding improper use of system resources

E.g. “Fork bombs” can disable a system

Page 2

– 5 – 15-213, F’08

wait: Synchronizing with Childrenwait: Synchronizing with Children
intint wait(intwait(int *child_status)*child_status)

suspends current process until one of its children terminates
return value is the pid of the child process that terminated
if child_status != NULL, then the object it points to will be
set to a status indicating why the child process terminated

– 6 – 15-213, F’08

wait: Synchronizing with Childrenwait: Synchronizing with Children
void fork9() {

int child_status;

if (fork() == 0) {
printf("HC: hello from child\n");

}
else {

printf("HP: hello from parent\n");
wait(&child_status);
printf("CT: child has terminated\n");

}
printf("Bye\n");
exit();

}
HP

HC Bye

CT Bye

– 7 – 15-213, F’08

wait() Examplewait() Example
If multiple children completed, will take in arbitrary order
Can use macros WIFEXITED and WEXITSTATUS to get
information about exit status

void fork10()
{

pid_t pid[N];
int i;
int child_status;
for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)
exit(100+i); /* Child */

for (i = 0; i < N; i++) {
pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf("Child %d terminated abnormally\n", wpid);

}
} – 8 – 15-213, F’08

waitpid(): Waiting for a Specific Processwaitpid(): Waiting for a Specific Process
waitpid(pid, &status, options)

suspends current process until specific process terminates
various options (that we won’t talk about)

void fork11()
{

pid_t pid[N];
int i;
int child_status;
for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)
exit(100+i); /* Child */

for (i = 0; i < N; i++) {
pid_t wpid = waitpid(pid[i], &child_status, 0);
if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf("Child %d terminated abnormally\n", wpid);

}

Page 3

– 9 – 15-213, F’08

exec: Loading and Running Programsexec: Loading and Running Programs
intint execl(charexecl(char *path, char *arg0, char *arg1, *path, char *arg0, char *arg1, ……, 0), 0)

Loads and runs executable at path with args arg0, arg1, …
path is the complete path of an executable object file
By convention, arg0 is the name of the executable object file
“Real” arguments to the program start with arg1, etc.
List of args is terminated by a (char *)0 argument
Environment taken from char **environ, which points to an
array of “name=value” strings:

» USER=droh
» LOGNAME=droh
» HOME=/afs/cs.cmu.edu/user/droh

Returns -1 if error, otherwise doesn’t return!

Family of functions includes execv, execve (base
function), execvp, execl, execle, and execlp

– 10 – 15-213, F’08

exec: Loading and Running Programsexec: Loading and Running Programs

main() {
if (fork() == 0) {

execl("/usr/bin/cp", "cp", "foo", "bar", 0);
}
wait(NULL);
printf("copy completed\n");
exit();

}

– 11 – 15-213, F’08

Shell ProgramsShell Programs
A A shellshell is an application program that runs programs on is an application program that runs programs on

behalf of the user.behalf of the user.
sh – Original Unix shell (Stephen Bourne, AT&T Bell Labs, 1977)
csh – BSD Unix C shell (tcsh: csh enhanced at CMU and elsewhere)
bash – “Bourne-Again” Shell

int main()
{

char cmdline[MAXLINE];

while (1) {
/* read */
printf("> ");
Fgets(cmdline, MAXLINE, stdin);
if (feof(stdin))

exit(0);

/* evaluate */
eval(cmdline);

}
}

Execution is a sequence of Execution is a sequence of
read/evaluate stepsread/evaluate steps

– 12 – 15-213, F’08

Simple Shell eval FunctionSimple Shell eval Function
void eval(char *cmdline)
{

char *argv[MAXARGS]; /* argv for execve() */
int bg; /* should the job run in bg or fg? */
pid_t pid; /* process id */

bg = parseline(cmdline, argv);
if (!builtin_command(argv)) {

if ((pid = Fork()) == 0) { /* child runs user job */
if (execve(argv[0], argv, environ) < 0) {

printf("%s: Command not found.\n", argv[0]);
exit(0);

}
}

if (!bg) { /* parent waits for fg job to terminate */
int status;
if (waitpid(pid, &status, 0) < 0)

unix_error("waitfg: waitpid error");
}
else /* otherwise, don’t wait for bg job */

printf("%d %s", pid, cmdline);
}

}

Page 4

– 13 – 15-213, F’08

“Background Job”?
What is a What is a ““background jobbackground job””??

Users generally run one command at a time
Type command, read output, type another command

Some programs run “for a long time”
Example: “delete this file in two hours”
% sleep 7200; rm /tmp/junk # shell stuck for 2
hours

A “background” job is a process we don't want to wait for
% (sleep 7200 ; rm /tmp/junk) &
[1] 907
% # ready for next command

– 14 – 15-213, F’08

Problem with Simple Shell Example
Shell correctly waits for and reaps foreground jobsShell correctly waits for and reaps foreground jobs

But what about background jobs?But what about background jobs?
Will become zombies when they terminate
Will never be reaped because shell (typically) will not terminate
Will create a memory leak that could theoretically run the kernel
out of memory

In modern Unix: once you exceed your process quota, your shell can't
run any new commands for you; fork() returns -1
% limit maxproc # csh syntax
maxproc 3574
$ ulimit -u # bash syntax
3574

– 15 – 15-213, F’08

ECF to the Rescue!
ProblemProblem

The shell doesn't know when a background job will finish
By nature, it could happen at any time
The shell's regular control flow can't reap exited background
processes in a timely fashion

Regular control flow is “wait until running job completes, then reap it”

Solution: Exceptional control flowSolution: Exceptional control flow
The kernel will interrupt regular processing to alert us when a
background process completes
In Unix, the alert mechanism is called a signal

– 16 – 15-213, F’08

SignalsSignals
A A signalsignal is a small message that notifies a process that an is a small message that notifies a process that an

event of some type has occurred in the systemevent of some type has occurred in the system
akin to exceptions and interrupts
sent from the kernel (sometimes at the request of another
process) to a process
signal type is identified by small integer ID’s (1-30)
only information in a signal is its ID and the fact that it arrived

Timer signalTimer signalTerminateTerminateSIGALRMSIGALRM1414
Segmentation violationSegmentation violationTerminate & DumpTerminate & DumpSIGSEGVSIGSEGV1111

1717

99
22

IDID

Child stopped or terminatedChild stopped or terminatedIgnoreIgnoreSIGCHLDSIGCHLD

Kill program (cannot override or ignore)Kill program (cannot override or ignore)TerminateTerminateSIGKILLSIGKILL
Interrupt (e.g., Interrupt (e.g., ctlctl--cc from keyboardfrom keyboard))TerminateTerminateSIGINTSIGINT
Corresponding EventCorresponding EventDefault ActionDefault ActionNameName

Page 5

– 17 – 15-213, F’08

Signal Concepts Signal Concepts
Sending a signalSending a signal

Kernel sends (delivers) a signal to a destination process by
updating some state in the context of the destination process
Kernel sends a signal for one of the following reasons:

Kernel has detected a system event such as divide-by-zero
(SIGFPE) or the termination of a child process (SIGCHLD)
Another process has invoked the kill system call to explicitly
request the kernel to send a signal to the destination process

– 18 – 15-213, F’08

Signal Concepts (continued)Signal Concepts (continued)
Receiving a signalReceiving a signal

A destination process receives a signal when it is forced by
the kernel to react in some way to the delivery of the signal
Three possible ways to react:

Ignore the signal (do nothing)
Terminate the process (with optional core dump).
Catch the signal by executing a user-level function called a
signal handler

» Akin to a hardware exception handler being called in
response to an asynchronous interrupt

– 19 – 15-213, F’08

Signal Concepts (continued)Signal Concepts (continued)
A signal is A signal is pendingpending if sent but not yet receivedif sent but not yet received

There can be at most one pending signal of any particular type
Important: Signals are not queued

If a process has a pending signal of type k, then subsequent
signals of type k that are sent to that process are discarded

A process can A process can blockblock the receipt of certain signalsthe receipt of certain signals
Blocked signals can be delivered, but will not be received until
the signal is unblocked

A pending signal is received at most onceA pending signal is received at most once

– 20 – 15-213, F’08

Signal ConceptsSignal Concepts
Kernel maintains Kernel maintains pendingpending and and blockedblocked bit vectors in the bit vectors in the

context of each processcontext of each process
pending – represents the set of pending signals

Kernel sets bit k in pending when a signal of type k is delivered
Kernel clears bit k in pending when a signal of type k is received

blocked – represents the set of blocked signals
Can be set and cleared by using the sigprocmask function

Page 6

– 21 – 15-213, F’08

Process GroupsProcess Groups
Every process belongs to exactly Every process belongs to exactly

one process groupone process group

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10
pgid=10

Foreground
process group 20

Background
process group 32

Background
process group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

getpgrpgetpgrp() () –– Return process Return process
group of current processgroup of current process

setpgidsetpgid() () –– Change process Change process
group of a processgroup of a process

– 22 – 15-213, F’08

Sending Signals with kill ProgramSending Signals with kill Program
kill kill program sends program sends

arbitrary signal to a arbitrary signal to a
process or process process or process
groupgroup

ExamplesExamples
kill –9 24818

Send SIGKILL to
process 24818

kill –9 –24817
Send SIGKILL to
every process in
process group
24817.

linux> ./forks 16
linux> Child1: pid=24818 pgrp=24817
Child2: pid=24819 pgrp=24817

linux> ps
PID TTY TIME CMD

24788 pts/2 00:00:00 tcsh
24818 pts/2 00:00:02 forks
24819 pts/2 00:00:02 forks
24820 pts/2 00:00:00 ps
linux> kill -9 -24817
linux> ps

PID TTY TIME CMD
24788 pts/2 00:00:00 tcsh
24823 pts/2 00:00:00 ps
linux>

– 23 – 15-213, F’08

Sending Signals with kill FunctionSending Signals with kill Function
void fork12()
{

pid_t pid[N];
int i, child_status;
for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)
while(1); /* Child infinite loop */

/* Parent terminates the child processes */
for (i = 0; i < N; i++) {

printf("Killing process %d\n", pid[i]);
kill(pid[i], SIGINT);

}

/* Parent reaps terminated children */
for (i = 0; i < N; i++) {

pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf("Child %d terminated abnormally\n", wpid);

}
}

– 24 – 15-213, F’08

Receiving SignalsReceiving Signals
Suppose kernel is returning from an exception handler Suppose kernel is returning from an exception handler

and is ready to pass control to process and is ready to pass control to process pp
Kernel computesKernel computes pnbpnb = pending & ~blocked= pending & ~blocked

The set of pending nonblocked signals for process p

If (If (pnbpnb == 0== 0))
Pass control to next instruction in the logical flow for p

ElseElse
Choose least nonzero bit k in pnb and force process p to
receive signal k
The receipt of the signal triggers some action by p
Repeat for all nonzero k in pnb
Pass control to next instruction in logical flow for p

Page 7

– 25 – 15-213, F’08

Default ActionsDefault Actions
Each signal type has a predefined Each signal type has a predefined default actiondefault action, which , which

is one of:is one of:
The process terminates
The process terminates and dumps core
The process stops until restarted by a SIGCONT signal
The process ignores the signal

– 26 – 15-213, F’08

Installing Signal HandlersInstalling Signal Handlers
The The signalsignal function modifies the default action function modifies the default action

associated with the receipt of signal associated with the receipt of signal signumsignum::
handler_t *signal(int signum, handler_t *handler)

Different values for Different values for handlerhandler::
SIG_IGN: ignore signals of type signum
SIG_DFL: revert to the default action on receipt of signals of
type signum
Otherwise, handler is the address of a signal handler

Called when process receives signal of type signum
Referred to as “installing” the handler
Executing handler is called “catching” or “handling” the signal
When the handler executes its return statement, control passes
back to instruction in the control flow of the process that was
interrupted by receipt of the signal

– 27 – 15-213, F’08

Signal Handling ExampleSignal Handling Example
void int_handler(int sig)
{

printf("Process %d received signal %d\n",
getpid(), sig);

exit(0);
}

void fork13()
{

pid_t pid[N];
int i, child_status;
signal(SIGINT, int_handler);

. . .
}

linux> ./forks 13
Killing process 24973
Killing process 24974
Killing process 24975
Killing process 24976
Killing process 24977
Process 24977 received signal 2
Child 24977 terminated with exit status 0
Process 24976 received signal 2
Child 24976 terminated with exit status 0
Process 24975 received signal 2
Child 24975 terminated with exit status 0
Process 24974 received signal 2
Child 24974 terminated with exit status 0
Process 24973 received signal 2
Child 24973 terminated with exit status 0
linux>

– 28 – 15-213, F’08

Signals Handlers as Concurrent FlowsSignals Handlers as Concurrent Flows

A signal handler is a separate logical flow (thread) that A signal handler is a separate logical flow (thread) that
runs concurrently with the main programruns concurrently with the main program

“concurrently”, in the “not sequential” sense

Time

Process A

while (1)
;

Process A

handler(){
…

}

Process B

Page 8

– 29 – 15-213, F’08

Another View of Signal Handlers as
Concurrent Flows
Another View of Signal Handlers as
Concurrent Flows

Process A
code

Process B
code

user code (main)

kernel code

user code (main)

kernel code

user code (handler)

context switch

context switch

kernel code

user code (main)

Icurr

Inext

context switch

Signal delivered

Signal received

– 30 – 15-213, F’08

Nonlocal Jumps: setjmp/longjmpNonlocal Jumps: setjmp/longjmp
Powerful (but dangerous) userPowerful (but dangerous) user--level mechanism for transferring level mechanism for transferring

control to an arbitrary locationcontrol to an arbitrary location
Controlled to way to break the procedure call / return discipline
Useful for error recovery and signal handling

intint setjmp(jmp_bufsetjmp(jmp_buf j)j)
Must be called before longjmp
Identifies a return site for a subsequent longjmp
Called once, returns one or more times

Implementation:Implementation:
Remember where you are by storing the current register context,
stack pointer, and PC value in jmp_buf
Return 0

– 31 – 15-213, F’08

setjmp/longjmp (cont)setjmp/longjmp (cont)

void void longjmp(jmp_buflongjmp(jmp_buf j, j, intint i)i)
Meaning:

return from the setjmp remembered by jump buffer j again...
…this time returning i instead of 0

Called after setjmp
Called once, but never returns

longjmplongjmp Implementation:Implementation:
Restore register context from jump buffer j
Set %eax (the return value) to i
Jump to the location indicated by the PC stored in jump buf j

– 32 – 15-213, F’08

setjmp/longjmp Examplesetjmp/longjmp Example

#include <setjmp.h>
jmp_buf buf;

main() {
if (setjmp(buf) != 0) {

printf("back in main due to an error\n");
else

printf("first time through\n");
p1(); /* p1 calls p2, which calls p3 */

}
...
p3() {

<error checking code>
if (error)

longjmp(buf, 1)
}

Page 9

– 33 – 15-213, F’08

Limitations of Nonlocal JumpsLimitations of Nonlocal Jumps
Works within stack disciplineWorks within stack discipline

Can only long jump to environment of function that has been
called but not yet completed
jmp_buf env;

P1()
{

if (setjmp(env)) {
/* Long Jump to here */

} else {
P2();

}
}

P2()
{ . . . P2(); . . . P3(); }

P3()
{

longjmp(env, 1);
}

P1

P2

P2

P2

P3

env
P1

Before longjmp

After longjmp

– 34 – 15-213, F’08

Limitations of Long Jumps (cont.)Limitations of Long Jumps (cont.)
Works within stack disciplineWorks within stack discipline

Can only long jump to environment of function that has been
called but not yet completed

jmp_buf env;

P1()
{

P2(); P3();
}

P2()
{

if (setjmp(env)) {
/* Long Jump to here */

}
}

P3()
{

longjmp(env, 1);
}

env

P1

P2

At setjmp

P1

P3
env

At longjmp

X

P1

P2

P2 returns

env
X

– 35 – 15-213, F’08

Putting It All Together: A Program
That Restarts Itself When ctrl-c’d
Putting It All Together: A Program
That Restarts Itself When ctrl-c’d
#include <stdio.h>
#include <signal.h>
#include <setjmp.h>

sigjmp_buf buf;

void handler(int sig) {
siglongjmp(buf, 1);

}

main() {
signal(SIGINT, handler);

if (!sigsetjmp(buf, 1))
printf("starting\n");

else
printf("restarting\n");

while(1) {
sleep(1);
printf("processing...\n");

}
}

bass> a.out

Ctrl-c

starting
processing...
processing...
restarting
processing...
processing...
restarting
processing...

Ctrl-c

– 36 – 15-213, F’08

SummarySummary

Signals provide processSignals provide process--level exception handlinglevel exception handling
Can generate from user programs
Can define effect by declaring signal handler

Some caveatsSome caveats
Very high overhead

>10,000 clock cycles
Only use for exceptional conditions

Don’t have queues
Just one bit for each pending signal type

Nonlocal jumps provide exceptional control flow within Nonlocal jumps provide exceptional control flow within
processprocess

Within constraints of stack discipline

Page 10

– 37 – 15-213, F’08

Sending Signals from the KeyboardSending Signals from the Keyboard
Typing ctrlTyping ctrl--c (ctrlc (ctrl--z) sends a SIGINT (SIGTSTP) to every job in the z) sends a SIGINT (SIGTSTP) to every job in the

foreground process group.foreground process group.
SIGINT – default action is to terminate each process
SIGTSTP – default action is to stop (suspend) each process

Fore-
ground

job

Back-
ground
job #1

Back-
ground
job #2

Shell

Child Child

pid=10
pgid=10

Foreground
process group 20

Background
process
group 32

Background
process
group 40

pid=20
pgid=20

pid=32
pgid=32

pid=40
pgid=40

pid=21
pgid=20

pid=22
pgid=20

– 38 – 15-213, F’08

Example of ctrl-c and ctrl-zExample of ctrl-c and ctrl-z
bluefish> ./forks 17
Child: pid=28108 pgrp=28107
Parent: pid=28107 pgrp=28107
<types ctrl-z>
Suspended
bluefish> ps w

PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28107 pts/8 T 0:01 ./forks 17
28108 pts/8 T 0:01 ./forks 17
28109 pts/8 R+ 0:00 ps w
bluefish> fg
./forks 17
<types ctrl-c>
bluefish> ps w

PID TTY STAT TIME COMMAND
27699 pts/8 Ss 0:00 -tcsh
28110 pts/8 R+ 0:00 ps w

STAT (process state)
Legend:

First letter:
S: sleeping
T: stopped
R: running

Second letter:
s: session leader
+: foreground proc group

See “man ps” for more
details

– 39 – 15-213, F’08

Signal Handler FunkinessSignal Handler Funkiness
Pending signals are not Pending signals are not

queuedqueued
For each signal type,
just have single bit
indicating whether or
not signal is pending
Even if multiple
processes have sent
this signal

int ccount = 0;
void child_handler(int sig)
{

int child_status;
pid_t pid = wait(&child_status);
ccount--;
printf("Received signal %d from process %d\n",

sig, pid);
}

void fork14()
{

pid_t pid[N];
int i, child_status;
ccount = N;
signal(SIGCHLD, child_handler);
for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0) {
sleep(1); /* deschedule child */
exit(0); /* Child: Exit */

}
while (ccount > 0)

pause();/* Suspend until signal occurs */
}

– 40 – 15-213, F’08

Living With Nonqueuing SignalsLiving With Nonqueuing Signals
Must check for all terminated jobsMust check for all terminated jobs

Typically loop with wait

void child_handler2(int sig)
{

int child_status;
pid_t pid;
while ((pid = waitpid(-1, &child_status, WNOHANG)) > 0) {

ccount--;
printf("Received signal %d from process %d\n", sig, pid);

}
}

void fork15()
{

. . .
signal(SIGCHLD, child_handler2);
. . .

}

Page 11

– 41 – 15-213, F’08

Signal Handler Funkiness (Cont.)Signal Handler Funkiness (Cont.)
Signal arrival during long system calls (say a Signal arrival during long system calls (say a readread))

Signal handler interrupts Signal handler interrupts read()read() callcall
Linux: upon return from signal handler, the read() call is
restarted automatically
Some other flavors of Unix can cause the read() call to fail
with an EINTER error number (errno)
in this case, the application program can restart the slow
system call

Subtle differences like these complicate the writing Subtle differences like these complicate the writing
of portable code that uses signals.of portable code that uses signals.

– 42 – 15-213, F’08

A Program That Reacts to
Externally Generated Events (ctrl-c)
A Program That Reacts to
Externally Generated Events (ctrl-c)

#include <stdlib.h>
#include <stdio.h>
#include <signal.h>

void handler(int sig) {
printf("You think hitting ctrl-c will stop the bomb?\n");
sleep(2);
printf("Well...");
fflush(stdout);
sleep(1);
printf("OK\n");
exit(0);

}

main() {
signal(SIGINT, handler); /* installs ctl-c handler */
while(1) {
}

}

– 43 – 15-213, F’08

A Program That Reacts to Internally
Generated Events
A Program That Reacts to Internally
Generated Events
#include <stdio.h>
#include <signal.h>

int beeps = 0;

/* SIGALRM handler */
void handler(int sig) {

printf("BEEP\n");
fflush(stdout);

if (++beeps < 5)
alarm(1);

else {
printf("BOOM!\n");
exit(0);

}
}

main() {
signal(SIGALRM, handler);
alarm(1); /* send SIGALRM in

1 second */

while (1) {
/* handler returns here */

}
}

linux> a.out
BEEP
BEEP
BEEP
BEEP
BEEP
BOOM!
bass>

