15-213

“The course that gives CMU its Zip!”

Exceptional Control Flow
& Processes
October 2, 2008

Topics
m Exceptions
m Processes and context switches
m Creating and destroying processes

lecture-11.ppt

Altering the Control Flow

Up to now: two mechanisms for changing control flow:
= Jumps and branches
m Call and return
Both react to changes in program state

Insufficient for a useful system

m Difficult for the CPU to react to changes in system state
e data arrives from a disk or a network adapter
® instruction divides by zero
e user hits Ctrl-C at the keyboard
® System timer expires

System needs mechanisms for “exceptional control flow”

-3- 15-213, F08

Page 1

Control Flow

Processors do only one thing:

m From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

m This sequence is the CPU’s control flow (or flow of control)

Physical control flow
<startup>
Time inst,
inst,
inst,
inst,
<shutdown>

-2- 15-213, F08

Exceptional Control Flow

m Mechanisms for exceptional control flow exists at all levels
of a computer system.

Low level Mechanism

m exceptions
e change in control flow in response to a system event (i.e.,
change in system state)

m combination of hardware and OS software

Higher Level Mechanisms
m Process context switch
= Signals
= Nonlocal jumps: setjmp()/longjmp()

= implemented by either:
® OS software (context switch and signals)
e C language runtime library: nonlocal jumps

—-4- 15-213, F08

Exceptions

An exception is a transfer of control to the OS in response
to some event (i.e., change in processor state)

User Process oS
event —— current l exception
next exception processing
by exception handler
exception

return (optional)

-5- 15-213, F08

Asynchronous Exceptions (Interrupts)

Caused by events external to the processor
m Indicated by setting the processor’s interrupt pin
m handler returns to “next” instruction

Examples:

m |/O interrupts
@ hitting Ctrl-C at the keyboard
® arrival of a packet from a network
e arrival of data from a disk

m Hard reset interrupt
® hitting the reset button

m Soft reset interrupt
@ hitting Ctrl-Alt-Delete on a PC

-7- 15-213, F08

Page 2

Interrupt Vectors

Exception

numbers
m Each type of event has a

unique exception number k

m Index into jump table (a.k.a.,
interrupt vector)

interrupt
vecto /1 code for
e exception handler 1 = Entry k points to a function
o /1 code for (exception handler)
o A)
z exception handler 2| w Handler k is called each

n-l% time exception k occurs

code for
exception handler n-1

code for
exception handler 0

-6- 15-213, F08

Synchronous Exceptions

Caused by events that occur as a result of executing an
instruction:
m Traps
® Intentional
® Examples: system calls, breakpoint traps, special instructions
® Returns control to “next” instruction

m Faults
e Unintentional but possibly recoverable
e Examples: page faults (recoverable), protection faults

(unrecoverable), floating point exceptions

e Either re-executes faulting (“current”) instruction or aborts

m Aborts
® unintentional and unrecoverable
® Examples: parity error, machine check
® Aborts current program

-8- 15-213, F'08

Trap Example

Opening a File
m User calls open(filename, options)

0804d070 <__libc_open>:
804d082: cd 80 int $0x80
804d084: 5b pop Y%ebx

® Function open executes system call instruction int
m OS must find or create file, get it ready for reading or writing

m Returns integer file descriptor

User Process oS

int J exception

pop N Open file
J return
15-213, F08

—_9-

int a[1000];
main O

Fault Example #2

Invalid Memory Reference
}

a[5000] = 13;

m User writes to memory location
m Address is not valid

80483b7: c7 05 60 e3 04 08 0d movl $0xd ,0x804e360

m Page handler detects invalid address
m Sends SIGSEGV signal to user process
m User process exits with “segmentation fault”

User Process oS

page fault

event —— 1
Detect invalid address

— Signal process

—~11—

15-213,F08

Fault Example #1
int a[1000];

Memory Reference T)
m User writes to memory location {
. a[500] = 13;
= That portion (page) of user’'s memory |3
is currently on disk
| 80483b7: c7 05 10 9d 04 08 0d movl
m Page handler must load page into
physical memory
m Returns to faulting instruction
m Successful on second try
User Process

$0xd ,0x8049d10 |

(O8]

l page fault

Create page and load
into memory

event —— movl

return
15-213, F08

—~10 -

Page 3

Processes
Definition: A process is an instance of a running program.
m One of the most profound ideas in computer science.
m Not the same as “program” or “processor”

Process provides each program with two key

abstractions:

m Logical control flow
® Each program seems to have exclusive use of the CPU.

m Private address space
® Each program seems to have exclusive use of main memory.

How are these lllusions maintained?
m Process executions interleaved (multitasking)

m Address spaces managed by virtual memory system
o (we'll talk about this in a couple of weeks)
15-213, F'08

—12—

Logical Control Flows

Each process has its own logical control flow

13- 15-213, F'08

User View of Concurrent Processes

Control flows for concurrent processes are physically
disjoint in time.

However, we can think of concurrent processes are
running in parallel with each other.

Process C

Process A Process B

Time

—15— 15-213,F08

Page 4

Concurrent Processes

Two processes run concurrently (are concurrent) if
their flows overlap in time

Otherwise, they are sequential

Examples:
m Concurrent: A&B,A&C
m Sequential: B& C

Process A Process B Process C

Time

14— 15-213, F08

Context Switching

Processes are managed by a shared chunk of OS code
called the kernel

m Important: the kernel is not a separate process, but rather
runs as part of some user process

Control flow passes from one process to another via a
context switch.

1
Process A 1 Process B
code ! code
l : user code
\:\ kernel code } context switch
Time '

! l user code

kernel code } context switch

user code

_16- 15-213, F'08

fork: Creating New Processes

int fork(void)
m creates a new process (child process) that is identical to the
calling process (parent process)
m returns O to the child process
m returns child’s pid to the parent process

if (forkQ) == 0) {
printf("hello from child\n™);

} else {
printf("hello from parent\n™);

Fork is interesting
(and often confusing)
because it is called
once but returns twice

_17- 15-213, F'08
Fork Example #2
Key Points
m Both parent and child can continue forking

void fork2()

{
printf(*’'LO\n™);
forkQ); L1 Ey:
printf('L1I\n"™); Y
forkQ); Bye
printf('Bye\n'"); Lo|L1 | Bye

}

15-213, F'08

—~19—

Fork Example #1

Key Points
m Parent and child both run same code

® Including shared output file descriptor

e Distinguish parent from child by return value from fork
m Start with same state, but each has private copy

® Relative ordering of their print statements undefined

—20—

void fork1()
{
int x = 1;
pid_t pid = forkQ;
if (pid == 0) {
printf('Child has x = %d\n", ++x);
} else {
printf(""Parent has x = %d\n", --X);
3
printf("'Bye from process %d with x = %d\n", getpid(), x);
3
18- 15-213, F'08
Fork Example #3
Key Points
m Both parent and child can continue forking

void fork3(Q)

{ B
printf('LO\N™); ye
forkQ: L2 | Bye
printf('L1\n™); Bye
forkQ; L1 |L2 | Bye
printf('L2\n"); Bye
fork(Q);
printf('Bye\n'"); L2 | Bye

} Bye

Lo [L1|L2 | Bye

15-213, F08

Page 5

Fork Example #4

Key Points
m Both parent and child can continue forking
void forkd()
{
printf("'LO\N™);
if (forkQ) '= 0) {
printf('L1\n"™);
if (fork(Q) '= 0) { ___ Bye
printf('L2\n");
forkQ); Bye
N } Bye
printf('Bye\n); Loltrie [eve
3
_21- 15-213, F'08

exit: Ending a process

void exit(int status)
m exits a process
o Normally return with status 0
m atexit() registers functions to be executed upon exit

void cleanup(void) {
printf(*'cleaning up\n');

void fork6() {
atexit(cleanup);
fork(Q);
exit(0);

3

—23- 15-213,F08

Page 6

Fork Example #5

Key Points
m Both parent and child can continue forking
void fork5Q)
{
printf('LO\n™);
if (forkQ) == 0) {
printf("L1\n");
if (forkQ) == 0) { Bye
printf('L2\n");
fork(Q);
3
¥
printf('Bye\n');
3
-22- 15-213, F08
Zombies
Idea

m When process terminates, still consumes system resources
® Various tables maintained by OS

m Called a “zombie”
® Living corpse, half alive and half dead

Reaping
m Performed by parent on terminated child
m Parent is given exit status information
m Kernel discards process

What if Parent Doesn’t Reap?
m if any parent terminates without reaping a child, then child
will be reaped by init process
m S0, only need explicit reaping in long-running processes

® e.g., shells and servers
—24- 15-213, F'08

Zomble ?id fork7Q)
if (forkQ ==0) {
Exam ple /* child */
printf('Terminating Child, PID = %d\n",
getpid());
exit(0);
} else {
printf(*'Running Parent, PID = %d\n",
linux> ./forks 7 & T (e e
[1] 6639 ; /* Infinite loop */
Running Parent, PID = 6639 h!
Terminating Child, PID = 6640 }
linux> ps
PID TTY TIME CMD

m ps shows child process as
“defunct”

m Killing parent allows child
to be reaped by tcsh

6585 ttyp9 00:00:00 tcsh
6639 ttyp9 00:00:03 forks
6640 ttyp9 00:00:00 forks <defunct>
6641 ttyp9 00:00:00 ps
linux> kill 6639
11 Terminated
linux> ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6642 ttyp9 00:00:00 ps

o5 15-213, F'08

wait: Synchronizing with Children

int wait(int *child_status)
m suspends current process until one of its children
terminates
m return value is the pid of the child process that terminated
m if child_status = NULL, then the object it points to will

be set to a status indicating why the child process
terminated

o7 15-213, F'08

Page 7

Nonterminating
Child
Example

linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676

linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6676 ttyp9 00:00:06 forks
6677 ttyp9 00:00:00 ps
linux> kill 6676
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6678 ttyp9 00:00:00 ps

— 26—

void fork8(Q)
{

if (forkQ) == 0) {
/* Child */
printf("Running Child, PID = %d\n",
getpid());
while (1)
; /* Infinite loop */
} else {
printf("Terminating Parent, PID = %d\n",
getpid());
exit(0);

m Child process still active
even though parent has
terminated

m Must Kill explicitly, or else
will keep running
indefinitely

15-213, F08

wait: Synchronizing with Children

void fork9() {
int child_status;

if (forkQ == 0) {

printf(""HC: hello from child\n™);

else {

printf("HP: hello from parent\n');
wait(&child_status);
printf("'CT: child has terminated\n');

3
printf('Bye\n'");
exit();

—28—

HC Bye

HP CT Bye

15-213, F08

wait() Example

m |f multiple children completed, will take in arbitrary order

m Can use macros WIFEXITED and WEXITSTATUS to get
information about exit status
void fork10Q)
{
pid_t pid[N];
int i;
int child_status;
for (i = 0; i < N; i++)
if ((pid[i] = forkQ)) == 0)
exit(100+i); /* Child */
for (i = 0; 1 <N; i++) {
pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))

printf(*'Child %d terminated with exit status %d\n",

wpid, WEXITSTATUS(child_status));
else

printf('Child %d terminate abnormally\n", wpid);

exec: Loading and Running Programs

int execl(char *path, char *arg0, char *argl, .., 0)

m Loads and runs executable at path with args argo0, argil, ...
e path is the complete path of an executable object file
® By convention, argO is the name of the executable object file
® “Real” arguments to the program start with argl, etc.
e List of args is terminated by a (char *)0 argument
® Environment taken from char **environ, which points to an
array of “name=value” strings:
» USER=ganger
» LOGNAME=ganger
» HOME=/afs/cs.cmu.edu/user/ganger
m Returns -1 if error, otherwise doesn’t return!

m Family of functions includes execv, execve (base
function), execvp, execl, execle, and execlp
-31- 15-213, F'08

Page 8

waitpid(): Waiting for a Specific Process

m waitpid(pid, &status, options)
® suspends current process until specific process terminates
® various options (that we won't talk about)

void fork11Q)
{

pid_t pid[N];
int i;
int child_status;
for (i = 0; 1 < N; i++)
if ((pid[i] = fork(Q)) == 0)
exit(100+i); /* Child */
for (i = 0; 1 <N; i++) {
pid_t wpid = waitpid(pid[i], &child_status, 0);
it (WIFEXITED(child_status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));
else

printf("Child %d terminated abnormally\n", wpid);

_30- 15-213, F'08

exec: Loading and Running Programs

main() {
if (forkQ) == 0) {
execl(*"/usr/bin/cp*, "cp', "foo", "bar", 0);

wait(NULL);
printf(*'copy completed\n™);
exit(Q);

3o 15-213, F'08

Summarizing

Exceptions
m Events that require nonstandard control flow
m Generated externally (interrupts) or internally (traps and faults)

Processes
m At any given time, system has multiple active processes
m Only one can execute at a time, though

m Each process appears to have total control of processor + private
memory space

33 15-213, F'08

Page 9

Summarizing (cont.)

Spawning Processes
m Call to fork
® One call, two returns

Process completion
m Call exit
® One call, no return

Reaping and Waiting for Processes
m Call waitor waitpid

Loading and Running Programs
m Call execl (or variant)
® One call, (hormally) no return

—34-

15-213, F08

