15-213

“The course that gives CMU its Zip!”

Network Programming
Nov. 6, 2008

Topics
m Peeking at Internet traffic
m Programmer’s view of the Internet (review)
m Sockets interface
m Writing clients and servers
m Understanding protocol

class20.ppt

A Client-Server Transaction

Most network applications are based on the client-
server model:

m A server process and one or more client processes
m Server manages some resource.
m Server provides service by manipulating resource for clients.

1. Client sends request
Client \ T Server ———)
process , .\ process RESEUEE
4. Client 2. Server

3. Server sends response
handles handles

response request

Note: clients and servers are processes running on hosts
(can be the same or different hosts).

o 15-213, F08

A Programmer’s View of the Internet

1. Hosts are mapped to a set of 32-bit IP addresses.
m 128.2.203.179

2. The set of IP addresses is mapped to a set of
identifiers called Internet domain names.

m 128.2.203.179 is mapped to www.cs.cmu.edu

3. A process on one Internet host can communicate
with a process on another Internet host over a
connection.

-3- 15-213, F08

1. IP Addresses

32-bit IP addresses are stored in an IP address struct

m |P addresses are always stored in memory in network byte
order (big-endian byte order)
m True in general for any integer transferred in a packet header
from one machine to another.
® E.g., the port number used to identify an Internet connection.

/* Internet address structure */
struct in_addr {
unsigned int s_addr; /* network byte order (big-endian) */

¥

Handy network byte-order conversion functions:
htonl: convert uint32_t from host to network byte order.
htons: convert uintl6_t from host to network byte order.
ntohl: convert uint32_t from network to host byte order.
ntohs: convert uintl6_t from network to host byte order.

-4- 15-213, F08

2. Domain Naming System (DNS)

The Internet maintains a mapping between IP addresses
and domain names in a huge worldwide distributed
database called DNS.

m Conceptually, programmers can view the DNS database as a
collection of millions of host entry structures:

/* DNS host entry structure */
struct hostent {
char *h_name; /* official domain name of host */
char **h_aliases; /* null-terminated array of domain names */
int h_addrtype; /* host address type (AF_INET) */
int h_length; /* length of an address, in bytes */
char **h_addr_list; /* null-terminated array of in_addr structs */

};

Functions for retrieving host entries from DNS:
m gethostbyname: query key is a DNS domain name.
_5 m gethostbyaddr: query key is an IP address. 15-213, F'08

3. Internet Connections

Clients and servers communicate by sending streams
of bytes over connections.

Connections are point-to-point, full-duplex (2-way
communication), and reliable.

Client socket address Server socket address
128.2.194.242:51213 208.216.181.15:

/ \
e / \ pmmmmmmmmmm e
/ \

Connection socket pair
(128.2.194.242:51213, 208.216.181.15:80)

l -
)

o9

= 5
<

© @

O -

RS

Client host address Server host address

128.2.194.242 208.216.181.15
Note: 51213 is an Note: 280 is a well-known port
ephemeral port allocated associated with Web servers
-6- by the kernel 15-213, F'08

Clients

Examples of client programs
m Web browsers, ftp, telnet, ssh

How does a client find the server?

m The IP address in the server socket address identifies the
host (more precisely, an adapter on the host)

m The (well-known) port in the server socket address identifies
the service, and thus implicitly identifies the server process
that performs that service.

m Examples of well know ports

® Port 7: Echo server
® Port 23: Telnet server
® Port 25: Mail server
® Port 80: Web server

-7- 15-213, F08

Using Ports to ldentify Services

Server host 128.2.194.242

Client host Service request for
128.2.194.242:80

(i.e., the Web server)

Web server
(port 80)

Kernel

Echo server
(port 7)

Service request for Web server
128.2.194.242:7 (port 80)

- (i.e., the echo server)

Echo server
(port 7)

-8- 15-213, F08

Servers

Servers are long-running processes (daemons).
m Created at boot-time (typically) by the init process (process 1)
m Run continuously until the machine is turned off.

Each server waits for requests to arrive on a well-known
port associated with a particular service.
m Port 7: echo server
m Port 23: telnet server
m Port 25: mail server
m Port 80: HTTP server

A machine that runs a server process is also often
referred to as a “server.”

9 15-213, F08

Server Examples

Web server (port 80)
m Resource: files/compute cycles (CGI programs)

m Service: retrieves files and runs CGI programs on behalf of
the client

FTP server (20’ 21) See /etc/services for a

" Resqurce. files _ _ comprehensive list of the
m Service: stores and retrieve files services available on a
Linux machine.

Telnet server (23)
m Resource: terminal
m Service: proxies aterminal on the server machine

Mail server (25)
m Resource: email “spool” file
m Service: stores mail messages in spool file

—~10 - 15-213, F08

Sockets Interface

Created in the early 80’'s as part of the original Berkeley
distribution of Unix that contained an early version of
the Internet protocols.

Provides a user-level interface to the network.
Underlying basis for all Internet applications.

Based on client/server programming model.

_11- 15-213, F08

Sockets

What is a socket?
m To the kernel, a socket is an endpoint of communication.

m To an application, a socket is afile descriptor that lets the
application read/write from/to the network.
® Remember: All Unix I/O devices, including networks, are
modeled as files.

Clients and servers communicate with each other by
reading from and writing to socket descriptors.

The main distinction between regular file I/0 and socket
I/0 is how the application “opens” the socket
descriptors.

12 15-213, F'08

Overview of the Sockets Interface

Client Server
open_clientfd
Connection
v v
Client / . .
Server Await connection
Session request from
next client
—~ 13- 15-213, F08

Socket Address Structures

Generic socket address:
m For address arguments to connect, bind, and accept.

m Necessary only because C did not have generic (void *)
pointers when the sockets interface was designed.

struct sockaddr {
unsigned short sa_ family; /* protocol family */
char sa_data[14]; /* address data. */
};
sa_family
— __
'
Family Specific
— 14— 15-213, F'08

Socket Address Structures

Internet-specific socket address:

m Must cast (sockaddr_in *)to (sockaddr *)for connect,
bind, and accept.

struct sockaddr_in {
unsigned short sin_family; /* address family (always AF_INET) */

unsigned short sin_port; /* port num in network byte order */
struct in_addr sin_addr; /* 1P addr in network byte order */
unsigned char sin_zero[8]; /* pad to sizeof(struct sockaddr) */
}:
sin_port sin_addr
AF_INET 0 0 0 0 0 0 0 0
- - /
S|n_famlly‘- —
Family Specific
—15- 15-213, F'08

Example: Echo Client and Server

On Server

bass> echoserver 5000

server established connection with KITTYHAWK.CMCL (128.2.194.242)
server received 4 bytes: 123

server established connection with KITTYHAWK.CMCL (128.2.194.242)
server received 7 bytes: 456789

On Client

kittyhawk> echoclient bass 5000
Please enter msg: 123
Echo from server: 123

kittyhawk> echoclient bass 5000
Please enter msg: 456789

Echo from server: 456789
kittyhawk>

_16- 15-213, F'08

Packet Sniffing

Program That Records Network Traffic Visible at Node

m Promiscuous Mode
® Record traffic that does not have this host as source or

destination
3 Feamerce Hal e T T—— F=ree Sinl
e ES View Fyeiter Jook Heb : | &
[L e N e P - e Y = 0)
Bibes | 5] e o a3l mpniting documertationokcie s peshaliveatill hemisinetmor: E =D |
Caogee - | =] @ Semchwies - g | PRt Dh i piocked o5 | @ Options # E=
. =

tion problems are reduced and a rich suite of
bir il £ et Ri0r PR G Gn i Pt
e Linax, plaase contact the Computing

d mail ko adnisore @ andnew. cmu.edu

Recksat Linuce A5 such, system ad
PPl e e S b

of the user. For more nfomation o
‘Senvices Help Center at 268-HELF

Hebtwork Traffic

Send line to
server ——

Echo Client Main Routine

#include "csapp.h"

/* usage: ./echoclient host port */

int main(int argc, char **argv)

{
int clientfd, port;
char *host, buf[MAXLINE];
rio_t rio;
host = argv[1l]; port = atoi(argv[2]);
clientfd = Open_clientfd(host, port);
Rio_readinitb(&rio, clientfd);
printf(""type:'); Fflush(stdout);
while (Fgets(buf, MAXLINE, stdin) != NULL) {

Rio_writen(clientfd, buf, strlen(buf));

Receiveline | Rio_readlineb(&rio, buf, MAXLINE);
from server printf('echo:™);

Fputs(buf, stdout);
printf(""type:"); fflush(stdout);

dence hall and dedicated remote access service Conmectons to the Cas }
e e b o e e o e e e i Close(clientfd);
[0 e = exit(0);
-17- 15-213, F'08 -18- ¥ -213, F'08
ient: lientfd
Overview of the Sockets Interface Echo Client: open_client
Client s int open_clientfd(char *hostname, int port) { |
i - - -
erver int clientfd; . This function opens a
sealE struct hostent *hp; connection from the client to
struct sockaddr_in serveraddr; the server at hostname :port
m open_listenfd if ((clientfd = socket(AF_INET, SOCK_STREAM, 0)) < 0) Create
R return -1; /* check errno for cause of error */ socket
open_clientfd
/* Fill in the server"s IP address and port */
Connection iT ((hp = gethostbyname(hostname)) == NULL) B
request return -2; /* check h_errno for cause of error */
connect }q """" bzero((char *) &serveraddr, sizeof(serveraddr));
serveraddr.sin_family = AF_INET; Create
bcopy((char *)hp->h_addr_list[0], address
(char *)&serveraddr.sin_addr.s_addr, hp->h_length);
serveraddr.sin_port = htons(port);
/
/* Establish a connection with the server */)
if (connect(clientfd, (SA *) &serveraddr, .
sizeof(serveraddr)) < 0) Estabhsh
return -1: connection
return clientfd; _J
-19- 15-213, F'08 } -213, F'08

Echo Client: open_clientfd
(socket)

socket creates a socket descriptor on the client

m Just allocates & initializes some internal data structures
m AF_INET: indicates that the socket is associated with Internet
protocols.
m SOCK_STREAM: selects a reliable byte stream connection
® Provided by TCP

int clientfd; /* socket descriptor */

if ((clientfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
return -1; /* check errno for cause of error */

... (more)

21— 15-213, F08

Echo Client: open_clientfd
(gethostbyname)

The client then builds the server’s Internet address.

int clientfd; /* socket descriptor */
struct hostent *hp; /* DNS host entry */
struct sockaddr_in serveraddr; /* server’s IP address */

/* fill in the server"s IP address and port */
if ((hp = gethostbyname(hostname)) == NULL)

return -2; /* check h_errno for cause of error */ Check this out!
bzero((char *) &serveraddr, sizeof(serveraddr));
serveraddr.sin_family = AF_INET;
serveraddr.sin_port = htons(port);
bcopy((char *)hp->h_addr_list[0],

(char *)é&serveraddr.sin_addr.s_addr, hp->h_length);

_22- 15-213, F08

A Careful Look at bcopy Arguments

/* DNS host entry structure */
struct hostent {

int h_length; /* length of an address, in bytes */
char **h_addr_list; /* null-terminated array of in_addr structs */

}:

struct sockaddr_in {

struct in_addr sin_addr; /* IP addr in network byte order */

};- " 17* Internet address structure */
struct in_addr {
unsigned int s_addr; /* network byte order (big-endian) */

X

struct hostent *hp; /* DNS host entry */
struct sockaddr_in serveraddr; /* server’s IP address */

bcopy((char *)hp->h_addr_list[0], /* src, dest */
(char *)&serveraddr.sin_addr.s_addr, hp->h_length);
_23-— 15-213, F'08

Echo Client: open_clientfd
(connect)

Finally the client creates a connection with the server.
m Client process suspends (blocks) until the connection is created.

m After resuming, the client is ready to begin exchanging messages
with the server via Unix I/O calls on descriptor clientfd.

int clientfd; /* socket descriptor */
struct sockaddr_in serveraddr; /* server address */
typedef struct sockaddr SA; /* generic sockaddr */

/* Establish a connection with the server */

it (connect(clientfd, (SA *)&serveraddr, sizeof(serveraddr)) < 0)
return -1;

return clientfd;

—24 - 15-213, F08

Echo Server: Main Routine

int

main(int argc, char **argv) {

int listenfd, connfd, port, clientlen;
struct sockaddr_in clientaddr;

struct hostent *hp;

char *haddrp;

port = atoi(argv[1]); /* the server listens on a port passed
on the command line */
listenfd = open_listenfd(port);

while (1) {

clientlen = sizeof(clientaddr);

connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);

hp = Gethostbyaddr((const char *)&clientaddr.sin_addr.s_addr,
sizeof(clientaddr.sin_addr.s_addr), AF_INET);

haddrp = inet_ntoa(clientaddr.sin_addr);

printf(*'server connected to %s (%s)\n", hp->h_name, haddrp);

echo(connfd);

Close(connfd);

- 25—

15-213, F08

Overview of the Sockets Interface

Client Server

socket socket

open_listenfd

open_clientfd
listen

Connection

connect |‘“r‘e‘g‘u‘e'§t“‘ accept

I

— 26— 15-213, F08

Echo Server: open_listenfd

{

int open_listenfd(int port)

int listenfd, optval=1;
struct sockaddr_in serveraddr;

/* Create a socket descriptor */
if ((listenfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
return -1;

/* Eliminates "Address already in use" error from bind. */
if (setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR,
(const void *)&optval , sizeof(int)) < 0)
return -1;

.. (more)

_27-—

15-213, F08

Echo Server: open_listenfd (cont)

/* Listenfd will be an endpoint for all requests to port
on any IP address for this host */
bzero((char *) &serveraddr, sizeof(serveraddr));
serveraddr.sin_family = AF_INET;
serveraddr.sin_addr.s_addr = htonl (INADDR_ANY);
serveraddr.sin_port = htons((unsigned short)port);
if (bind(listenfd, (SA *)é&serveraddr, sizeof(serveraddr)) < 0)
return -1;

/* Make it a listening socket ready to accept
connection requests */
if (listen(listenfd, LISTENQ) < 0)
return -1;

return listenfd;

}

og 15-213, F'08

Echo Server: open_Ilistenfd
(socket)

socket creates a socket descriptor on the server.

m AF_INET: indicates that the socket is associated with Internet
protocols.

m SOCK_STREAM: selects areliable byte stream connection (TCP)

int listenfd; /* listening socket descriptor */

/* Create a socket descriptor */
ifT ((listenfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
return -1;

—29— 15-213, F08

Echo Server: open_Ilistenfd
(setsockopt)

The socket can be given some attributes.

/* Eliminates "Address already in use"™ error from bind(). */
if (setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR,
(const void *)&optval , sizeof(int)) < 0)
return -1;

Handy trick that allows us to rerun the server
immediately after we kill it.

m Otherwise we would have to wait about 15 secs.
m Eliminates “Address already in use” error from bind().

Strongly suggest you do this for all your servers to
simplify debugging.

—~30-— 15-213, F08

Echo Server: open_listenfd
(initialize socket address)

Initialize socket with server port number
accept connection from any IP address

struct sockaddr_in serveraddr; /* server®s socket addr */

/* listenfd will be an endpoint for all requests to port
on any IP address for this host */

bzero((char *) &serveraddr, sizeof(serveraddr));

serveraddr.sin_family = AF_INET;

serveraddr.sin_port = htons((unsigned short)port);

serveraddr._sin_addr.s_addr = htonl (INADDR_ANY);

sin_port sin_addr

AF_INET NADDR_AN 0 0 0 0 0 0 0 0

sin_family

IP addr and port stored in network (big-endian) byte order

31— 15-213, F08

Echo Server: open_listenfd
(bind)

bind associates the socket with the socket address we
just created.

int listenfd; /* listening socket */
struct sockaddr_in serveraddr; /* server’s socket addr */

/* listenfd will be an endpoint for all requests to port
on any IP address for this host */
if (bind(listenfd, (SA *)&serveraddr, sizeof(serveraddr)) < 0)
return -1;

3 15-213, F'08

Echo Server: open_listenfd
(listen)
listen indicates that this socket will accept
connection (connect) requests from clients

LISTENQ is constant indicating how many pending
requests allowed

int listenfd; /* listening socket */

/* Make it a listening socket ready to accept connection requests */
if (listen(listenfd, LISTENQ) < 0)
return -1;
return listenfd;

}

We're finally ready to enter the main server loop that

accepts and processes client connection requests.
15-213, F'08

—-33-—

Echo Server: Main Loop

The server loops endlessly, waiting for connection
requests, then reading input from the client, and
echoing the input back to the client.

main() {

/* create and configure the listening socket */

while(1) {
/* Accept(): wait for a connection request */
/* echo(): read and echo input lines from client til EOF */

/* Close(): close the connection */

}

—_34— 15-213, F'08

Overview of the Sockets Interface

Client Server

open_listenfd

Connection

v v

open_clientfd

Client / _ _

Server Await connection

Session request from
next client

35 15-213, F08

Echo Server: accept

accept() blocks waiting for a connection request.

int listenfd; /* listening descriptor */
int connfd; /* connected descriptor */
struct sockaddr_in clientaddr;

int clientlen;

clientlen = sizeof(clientaddr);
connfd = Accept(listenfd, (SA *)&clientaddr, &clientlen);

accept returns a connected descriptor (connfd) with
the same properties as the listening descriptor
(histenfd)

m Returns when the connection between client and server is
created and ready for I/O transfers.

m All I/O with the client will be done via the connected socket.
accept also fills in client’s IP address.

36— 15-213, F'08

Echo Server: accept lllustrated

listenfd(3) 1. Server blocks in accept,
) Ol waiting for connection
Client SR request on listening
clientfd descriptor listenfd.
Connection listenfd(3)
request . 0 2. Client makes connection
Client Server request by calling and blocking in
clientfd connect.
listenfd(3) 3. Server returns connfd from
accept. Client returns from
Client Server connect. Connection is now
chientfd connfd(4) established between clientfd
and connfd.
37— 15-213, F08

Connected vs. Listening Descriptors

Listening descriptor
m End point for client connection requests.
m Created once and exists for lifetime of the server.

Connected descriptor
m End point of the connection between client and server.

m A new descriptor is created each time the server accepts a
connection request from a client.

m Exists only as long as it takes to service client.

Why the distinction?

m Allows for concurrent servers that can communicate over
many client connections simultaneously.
® E.g., Each time we receive a new request, we fork a child to
handle the request.

— 38— 15-213, F08

Echo Server: Identifying the Client

The server can determine the domain name and IP
address of the client.

struct hostent *hp; /* pointer to DNS host entry */
char *haddrp; /* pointer to dotted decimal string */

hp = Gethostbyaddr((const char *)&clientaddr.sin_addr.s_addr,
sizeof(clientaddr.sin_addr.s_addr), AF_INET);

haddrp = inet_ntoa(clientaddr.sin_addr);

printf("'server connected to %s (%s)\n', hp->h_name, haddrp);

39 15-213, F08

Echo Server: echo

The server uses RIO to read and echo text lines until
EOF (end-of-file) is encountered.

m EOF notification caused by client calling
close(clientfd).

m IMPORTANT: EOF is a condition, not a particular data byte.

void echo(int connfd)
{
size_t n;
char buf[MAXLINE];
rio_t rio;

Rio_readinitb(&rio, connfd);

while((n = Rio_readlineb(&rio, buf, MAXLINE)) I= 0) {
upper_case(buf);
Rio_writen(connfd, buf, n);
printf(*'server received %d bytes\n", n);

- b-213, F'08

Testing Servers Using telnet

The telnet program is invaluable for testing servers
that transmit ASCII strings over Internet connections
m Our simple echo server
m Web servers
m Mail servers

Usage:
m unix> telnet <host> <portnumber>

m Creates a connection with a server running on <host> and
listening on port <portnumber>.

41— 15-213, F'08

Testing the Echo Server With telnet

bass> echoserver 5000

server established connection with KITTYHAWK.CMCL (128.2.194.242)
server received 5 bytes: 123

server established connection with KITTYHAWK.CMCL (128.2.194.242)
server received 8 bytes: 456789

kittyhawk> telnet bass 5000
Trying 128.2.222.85...

Connected to BASS.CMCL.CS.CMU.EDU.
Escape character is "/]".

123

123

Connection closed by foreign host.
kittyhawk> telnet bass 5000
Trying 128.2.222.85...

Connected to BASS.CMCL.CS.CMU.EDU.
Escape character is "/]-.

456789

456789

Connection closed by foreign host.
kittyhawk>

42 — 15-213, F'08

For More Information

W. Richard Stevens, “Unix Network Programming:
Networking APIs: Sockets and XTI", Volume 1,
Second Edition, Prentice Hall, 1998.

m THE network programming bible.

Unix Man Pages
m Good for detailed information about specific functions

Complete versions of the echo client and server are
developed in the text.
m Available from csapp.cs.-cmu.edu

m You should compile and run them for yourselves to see how
they work.

m Feel free to borrow any of this code.

— 43— 15-213, F08

