Bits, Bytes, and Integers

August 28, 2008

Topics

- Representing information as bits
- Bit-level manipulations
 - Boolean algebra
 - Expressing in C
- Representations of Integers
 - Basic properties and operations
 - Implications for C
Binary Representations

Base 2 Number Representation
- Represent 15_{10} as 11101101101101_2
- Represent 1.20_{10} as $1.0011001100110011[0011]..._2$
- Represent 1.5213×10^4 as $1.1101101101101_2 \times 2^{13}$

Electronic Implementation
- Easy to store with bistable elements
- Reliably transmitted on noisy and inaccurate wires
Encoding Byte Values

Byte = 8 bits

- **Binary** 00000000 \(_2\) to 11111111 \(_2\)
- **Decimal**: \(0_{10}\) to \(255_{10}\)
 - First digit must not be 0 in C
- **Hexadecimal** 00\(_{16}\) to FF\(_{16}\)
 - Base 16 number representation
 - Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
 - Write FA1D37B\(_{16}\) in C as 0xFA1D37B
 - Or 0xfa1d37b

<table>
<thead>
<tr>
<th>Hex</th>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>1010</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>1011</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>1100</td>
</tr>
<tr>
<td>D</td>
<td>13</td>
<td>1101</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td>1111</td>
</tr>
</tbody>
</table>
Byte-Oriented Memory Organization

Programs Refer to Virtual Addresses

- Conceptually very large array of bytes
- Actually implemented with hierarchy of different memory types
- System provides address space private to particular "process"
 - Program being executed
 - Program can clobber its own data, but not that of others

Compiler + Run-Time System Control Allocation

- Where different program objects should be stored
- All allocation within single virtual address space
Machine Words

Machine Has “Word Size”

- Nominal size of integer-valued data
 - Including addresses
- Most current machines use 32 bits (4 bytes) words
 - Limits addresses to 4GB
 - Becoming too small for memory-intensive applications
- High-end systems use 64 bits (8 bytes) words
 - Potential address space \(\approx 1.8 \times 10^{19} \) bytes
 - x86-64 machines support 48-bit addresses: 256 Terabytes
- Machines support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes
Word-Oriented Memory Organization

Addresses Specify Byte Locations

- Address of first byte in word
- Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

<table>
<thead>
<tr>
<th>32-bit Words</th>
<th>64-bit Words</th>
<th>Bytes</th>
<th>Addr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addr = 0000</td>
<td></td>
<td>0000</td>
<td></td>
</tr>
<tr>
<td>Addr = 0004</td>
<td></td>
<td>0001</td>
<td></td>
</tr>
<tr>
<td>Addr = 0008</td>
<td></td>
<td>0002</td>
<td></td>
</tr>
<tr>
<td>Addr = 0012</td>
<td></td>
<td>0003</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0004</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0005</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0006</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0007</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0008</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0009</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0010</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0011</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0012</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0013</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0014</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0015</td>
<td></td>
</tr>
</tbody>
</table>
Data Representations

Sizes of C Objects (in Bytes)

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>Typical 32-bit</th>
<th>Intel IA32</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>long</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>long long</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>long double</td>
<td>8</td>
<td>10/12</td>
<td>10/16</td>
</tr>
<tr>
<td>char *</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

» Or any other pointer
Byte Ordering

How should bytes within multi-byte word be ordered in memory?

Conventions

- **Big Endian**: Sun, PPC Mac, Internet
 - Least significant byte has highest address
- **Little Endian**: x86
 - Least significant byte has lowest address
Byte Ordering Example

Big Endian
- Least significant byte has highest address

Little Endian
- Least significant byte has lowest address

Example
- Variable x has 4-byte representation $0x01234567$
- Address given by $&x$ is $0x100$

<table>
<thead>
<tr>
<th>Big Endian</th>
<th>0x100 0x101 0x102 0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>01 23 45 67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Little Endian</th>
<th>0x100 0x101 0x102 0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>67 45 23 01</td>
</tr>
</tbody>
</table>
Reading Byte-Reversed Listings

Disassembly
- Text representation of binary machine code
- Generated by program that reads the machine code

Example Fragment

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction Code</th>
<th>Assembly Rendition</th>
</tr>
</thead>
<tbody>
<tr>
<td>8048365:</td>
<td>5b</td>
<td>pop %ebx</td>
</tr>
<tr>
<td>8048366:</td>
<td>81 c3 ab 12 00 00</td>
<td>add $0x12ab,%ebx</td>
</tr>
<tr>
<td>804836c:</td>
<td>83 bb 28 00 00 00</td>
<td>cmpl $0x0,0x28(%ebx)</td>
</tr>
</tbody>
</table>

Deciphering Numbers
- Value: 0x12ab
- Pad to 32 bits: 0x000012ab
- Split into bytes: 00 00 12 ab
- Reverse: ab 12 00 00
Examining Data Representations

Code to Print Byte Representation of Data

- Casting pointer to `unsigned char *` creates byte array

```
typedef unsigned char *pointer;

void show_bytes(pointer start, int len)
{
    int i;
    for (i = 0; i < len; i++)
        printf("0x%p\t0x%.2x\n",
               start+i, start[i]);
    printf("\n");
}
```

Printf directives:
- `%p`: Print pointer
- `%x`: Print Hexadecimal
show_bytes Execution Example

```c
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux):

```c
int a = 15213;
0x11ffffffcb8 0x6d
0x11ffffffcb9 0x3b
0x11ffffffcba 0x00
0x11ffffffcbb 0x00
```
Representing Integers

```c
int A = 15213;
int B = -15213;
long int C = 15213;
```

<table>
<thead>
<tr>
<th>Decimal: 15213</th>
<th>Binary: 0011 1011 0110 1101</th>
<th>Hex: 3 B 6 D</th>
</tr>
</thead>
</table>

- **IA32, x86-64 A**
 - Sun A
 - 6D → 00
 - 3B → 00
 - 00 → 3B
 - 00 → 6D

- **IA32, x86-64 B**
 - Sun B
 - 93 → FF
 - C4 → FF
 - FF → C4
 - FF → 93

Two’s complement representation
(Covered later)
Representing Pointers

int B = -15213;
int *P = &B;

Different compilers & machines assign different locations to objects
Representing Strings

Strings in C

- Represented by array of characters
- Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character “0” has code 0x30
 » Digit i has code 0x30+i
- String should be null-terminated
 - Final character = 0

Compatibility

- Byte ordering not an issue

char S[6] = "15213";

```
Linux/Alpha S Sun S
31 31
35 35
32 32
31 31
33 33
00 00
```
Boolean Algebra

Developed by George Boole in 19th Century

- Algebraic representation of logic
 - Encode “True” as 1 and “False” as 0

And
- \(A \& B = 1 \) when both \(A=1 \) and \(B=1 \)

<table>
<thead>
<tr>
<th>&</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Or
- \(A|B = 1 \) when either \(A=1 \) or \(B=1 \)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Not
- \(\sim A = 1 \) when \(A=0 \)

<table>
<thead>
<tr>
<th>(\sim)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Exclusive-Or (Xor)
- \(A^\wedge B = 1 \) when either \(A=1 \) or \(B=1 \), but not both

<table>
<thead>
<tr>
<th>^</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Application of Boolean Algebra

Applied to Digital Systems by Claude Shannon

- 1937 MIT Master’s Thesis
- Reason about networks of relay switches
 - Encode closed switch as 1, open switch as 0

Connection when

\[A \& \sim B \mid \sim A \& B \]

= \(A^\wedge B \)
General Boolean Algebras

Operate on Bit Vectors

- Operations applied bitwise

\[
\begin{array}{c}
01101001 \\
\& 01010101 \\
01000001
\end{array}
\quad
\begin{array}{c}
01101001 \\
| 01010101 \\
01111101
\end{array}
\quad
\begin{array}{c}
01101001 \\
^ 01010101 \\
00111100
\end{array}
\quad
\begin{array}{c}
\sim 01010101 \\
01010101
\end{array}
\]

All of the Properties of Boolean Algebra Apply
Representing & Manipulating Sets

Representation
- **Width** w bit vector represents subsets of \{0, ..., w-1\}
- $a_j = 1$ if $j \in A$

\[
\begin{align*}
01101001 & \quad \text{\{0, 3, 5, 6\}} \\
76543210 & \\
01010101 & \quad \text{\{0, 2, 4, 6\}} \\
76543210 &
\end{align*}
\]

Operations
- **&** Intersection
 \[
 \begin{array}{ll}
 01000001 & \text{\{0, 6\}} \\
 76543210 \\
 \end{array}
 \]
- **|** Union
 \[
 \begin{array}{ll}
 01111101 & \text{\{0, 2, 3, 4, 5, 6\}} \\
 76543210 \\
 \end{array}
 \]
- **^** Symmetric difference
 \[
 \begin{array}{ll}
 00111100 & \text{\{2, 3, 4, 5\}} \\
 76543210 \\
 \end{array}
 \]
- **~** Complement
 \[
 \begin{array}{ll}
 10101010 & \text{\{1, 3, 5, 7\}} \\
 76543210 \\
 \end{array}
 \]
Bit-Level Operations in C

Operations &, |, ~, ^ Available in C

- Apply to any “integral” data type
 - long, int, short, char, unsigned
- View arguments as bit vectors
- Arguments applied bit-wise

Examples (Char data type)

- ~0x41 --> 0xBE
 - ~01000001₂ --> 10111110₂
- ~0x00 --> 0xFF
 - ~00000000₂ --> 11111111₂
- 0x69 & 0x55 --> 0x41
 - 01101001₂ & 01010101₂ --> 01000001₂
- 0x69 | 0x55 --> 0x7D
 - 01101001₂ | 01010101₂ --> 01111101₂
Contrast: Logic Operations in C

Contrast to Logical Operators

- `&&, ||, !`
 - View 0 as “False”
 - Anything nonzero as “True”
 - Always return 0 or 1
 - Early termination

Examples (char data type)

- `!0x41 --> 0x00`
- `!0x00 --> 0x01`
- `!!0x41 --> 0x01`
- `0x69 && 0x55 --> 0x01`
- `0x69 || 0x55 --> 0x01`
- `p && *p (avoids null pointer access)`
Shift Operations

Left Shift: \(x \ll y \)
- Shift bit-vector \(x \) left \(y \) positions
 - Throw away extra bits on left
 - Fill with 0’s on right

Right Shift: \(x \gg y \)
- Shift bit-vector \(x \) right \(y \) positions
 - Throw away extra bits on right
- Logical shift
 - Fill with 0’s on left
- Arithmetic shift
 - Replicate most significant bit on right

Undefined Behavior
- Shift amount < 0 or \(\geq \) word size

<table>
<thead>
<tr>
<th>Argument x</th>
<th>01100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ll 3)</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. (\gg 2)</td>
<td>00011000</td>
</tr>
<tr>
<td>Arith. (\gg 2)</td>
<td>00011000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argument x</th>
<th>10100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ll 3)</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. (\gg 2)</td>
<td>00101000</td>
</tr>
<tr>
<td>Arith. (\gg 2)</td>
<td>11101000</td>
</tr>
</tbody>
</table>
Integer C Puzzles

- Assume 32-bit word size, two’s complement integers
- For each of the following C expressions, either:
 - Argue that is true for all argument values
 - Give example where not true

- \(x < 0 \) \(\Rightarrow \) \((x \times 2) < 0\)
- \(ux >= 0 \)
- \(x \& 7 == 7 \) \(\Rightarrow \) \((x \ll 30) < 0\)
- \(ux > -1 \)
- \(x > y \) \(\Rightarrow \) \(-x < -y\)
- \(x \times x >= 0 \)
- \(x > 0 \&\& y > 0 \) \(\Rightarrow \) \(x + y > 0\)
- \(x >= 0 \) \(\Rightarrow \) \(-x <= 0\)
- \(x <= 0 \) \(\Rightarrow \) \(-x >= 0\)
- \((x|\neg x)>>31 == -1\)
- \(ux >> 3 == ux/8\)
- \(x >> 3 == x/8\)
- \(x \& (x-1) != 0\)

Initialization

```c
int x = foo();
int y = bar();
unsigned ux = x;
unsigned uy = y;
```
Encoding Integers

Unsigned

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

Two’s Complement

$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

- C short 2 bytes long

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D 01111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93 11000100 10010011</td>
</tr>
</tbody>
</table>

Sign Bit

- For 2’s complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative
Encoding Example (Cont.)

\[x = 15213: \quad 00111011 \quad 01101101 \]
\[y = -15213: \quad 11000100 \quad 10010011 \]

<table>
<thead>
<tr>
<th>Weight</th>
<th>15213</th>
<th>-15213</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>64</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>128</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>256</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>512</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1024</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2048</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4096</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8192</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16384</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>-32768</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Sum 15213 -15213
Numeric Ranges

Unsigned Values

- $U_{Min} = 0 \quad \begin{array}{c} \text{00...0} \end{array}$
- $U_{Max} = 2^w - 1 \quad \begin{array}{c} \text{111...1} \end{array}$

Two's Complement Values

- $T_{Min} = -2^{w-1} \quad \begin{array}{c} \text{100...0} \end{array}$
- $T_{Max} = 2^{w-1} - 1 \quad \begin{array}{c} \text{011...1} \end{array}$

Other Values

- Minus 1 \quad \begin{array}{c} \text{111...1} \end{array}

Values for $W = 16$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_{Max}</td>
<td>65535</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>T_{Max}</td>
<td>32767</td>
<td>7F FF</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>T_{Min}</td>
<td>-32768</td>
<td>80 00</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Values for Different Word Sizes

<table>
<thead>
<tr>
<th>W</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>255</td>
<td>65,535</td>
<td>4,294,967,295</td>
<td>18,446,744,073,709,551,615</td>
</tr>
<tr>
<td>Tmax</td>
<td>127</td>
<td>32,767</td>
<td>2,147,483,647</td>
<td>9,223,372,036,854,775,807</td>
</tr>
<tr>
<td>Tmin</td>
<td>-128</td>
<td>-32,768</td>
<td>-2,147,483,648</td>
<td>-9,223,372,036,854,775,808</td>
</tr>
</tbody>
</table>

Observations

- $|T_{\text{Min}}| = T_{\text{Max}} + 1$
 - Asymmetric range
- $U_{\text{Max}} = 2 \times T_{\text{Max}} + 1$

C Programming

- `#include <limits.h>`
 - K&R App. B11
- Declares constants, e.g.,
 - `ULONG_MAX`
 - `LONG_MAX`
 - `LONG_MIN`
- Values platform-specific
Unsigned & Signed Numeric Values

Equivalence
- Same encodings for nonnegative values

Uniqueness
- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

⇒ **Can Invert Mappings**
- $U2B(x) = B2U^{-1}(x)$
 - Bit pattern for unsigned integer
- $T2B(x) = B2T^{-1}(x)$
 - Bit pattern for two’s comp integer

<table>
<thead>
<tr>
<th>X</th>
<th>B2U(X)</th>
<th>B2T(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>-1</td>
</tr>
</tbody>
</table>
Define mappings between unsigned and two’s complement numbers based on their bit-level representations.
Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>
Mapping Signed ↔ Unsigned

<table>
<thead>
<tr>
<th>Bits</th>
<th>Signed</th>
<th>Unsigned</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>-8</td>
<td>8</td>
</tr>
<tr>
<td>1001</td>
<td>-7</td>
<td>9</td>
</tr>
<tr>
<td>1010</td>
<td>-6</td>
<td>10</td>
</tr>
<tr>
<td>1011</td>
<td>-5</td>
<td>11</td>
</tr>
<tr>
<td>1100</td>
<td>-4</td>
<td>12</td>
</tr>
<tr>
<td>1101</td>
<td>-3</td>
<td>13</td>
</tr>
<tr>
<td>1110</td>
<td>-2</td>
<td>14</td>
</tr>
<tr>
<td>1111</td>
<td>-1</td>
<td>15</td>
</tr>
</tbody>
</table>

= +16
Relation between Signed & Unsigned

Two’s Complement \[x \] Signed

T2U

T2B

B2U

Unsigned \[u_x \]

Maintain Same Bit Pattern

Large negative weight \[\rightarrow \] Large positive weight

\[
ux = \begin{cases}
x & x \geq 0 \\
 x + 2^w & x < 0
\end{cases}
\]
Signed vs. Unsigned in C

Constants
- By default are considered to be signed integers
- Unsigned if have “U” as suffix
 0U, 4294967259U

Casting
- Explicit casting between signed & unsigned same as U2T and T2U
  ```c
  int tx, ty;
  unsigned ux, uy;
  tx = (int) ux;
  uy = (unsigned) ty;
  ```
- Implicit casting also occurs via assignments and procedure calls
  ```c
  tx = ux;
  uy = ty;
  ```
Casting Surprises

Expression Evaluation

- If mix unsigned and signed in single expression, signed values implicitly cast to unsigned
- Including comparison operations <, >, ==, <=, >=
- Examples for $W = 32$

<table>
<thead>
<tr>
<th>Constant$_1$</th>
<th>Constant$_2$</th>
<th>Relation</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0U</td>
<td>==</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td><</td>
<td>signed</td>
</tr>
<tr>
<td>-1</td>
<td>0U</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>-2147483647-1</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>2147483647U</td>
<td>-2147483647-1</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>(unsigned) -1</td>
<td>-2</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>2147483648U</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>(int) 2147483648U</td>
<td>></td>
<td>signed</td>
</tr>
</tbody>
</table>
Explanation of Casting Surprises

2’s Comp. → Unsigned

- Ordering Inversion
- Negative → Big Positive

Ordering Inversion: When the order of numbers changes due to conversion from signed to unsigned representation.

Negative → Big Positive: Negative numbers in 2’s complement become very large positive numbers in unsigned format.

Unsigned Range: The range of unsigned numbers, from 0 to UMax.

2’s Comp. Range: The range of 2’s complement numbers, from Tmin to Tmax.

Diagram illustrating the mapping from 2’s complement to unsigned numbers, showing how negative numbers are mapped to large positive numbers.
Code Security Example #1

- Similar to code found in FreeBSD's implementation of getpeername.
- There are legions of smart people trying to find vulnerabilities in programs
 - Think of it as a very stringent testing environment

```c
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}
```
Typical Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
 /* Byte count len is minimum of buffer size and maxlen */
 int len = KSIZE < maxlen ? KSIZE : maxlen;
 memcpy(user_dest, kbuf, len);
 return len;
}

#define MSIZE 528

void getstuff() {
 char mybuf[MSIZE];
 copy_from_kernel(mybuf, MSIZE);
 printf("%s\n", mybuf);
}

Malicious Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void *user_dest, int maxlen) {
 /* Byte count len is minimum of buffer size and maxlen */
 int len = KSIZE < maxlen ? KSIZE : maxlen;
 memcpy(user_dest, kbuf, len);
 return len;
}

#define MSIZE 528

void getstuff() {
 char mybuf[MSIZE];
 copy_from_kernel(mybuf, -MSIZE);
 . . .
}
Sign Extension

Task:
- Given \(w \)-bit signed integer \(x \)
- Convert it to \(w+k \)-bit integer with same value

Rule:
- Make \(k \) copies of sign bit:
 \[
 X' = x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_0
 \]
- \(k \) copies of MSB
Sign Extension Example

```
short int x = 15213;
int ix = (int) x;
short int y = -15213;
int iy = (int) y;
```

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D 00111011 01101101</td>
<td></td>
</tr>
<tr>
<td>ix</td>
<td>15213</td>
<td>00 00 3B 6D 00000000 00000000 00111011 01101101</td>
<td></td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93 11000100 10010011</td>
<td></td>
</tr>
<tr>
<td>iy</td>
<td>-15213</td>
<td>FF FF C4 93 11111111 11111111 11000100 10010011</td>
<td></td>
</tr>
</tbody>
</table>

- Converting from smaller to larger integer data type
- C automatically performs sign extension
Why Should I Use Unsigned?

Don’t Use Just Because Number Nonnegative

- Easy to make mistakes
  ```c
  unsigned i;
  for (i = cnt-2; i >= 0; i--)
    a[i] += a[i+1];
  ```

- Can be very subtle
  ```c
  #define DELTA sizeof(int)
  int i;
  for (i = CNT; i-DELTA >= 0; i-= DELTA)
    ...
  ```

Do Use When Performing Modular Arithmetic

- Multiprecision arithmetic

Do Use When Using Bits to Represent Sets

- Logical right shift, no sign extension
Complement & Increment

Claim: Following Holds for 2’s Complement

\[\sim x + 1 = -x \]

Complement

- Observation: \(\sim x + x = 1\ldots1_2 = -1 \)

\[
\begin{array}{c}
x \quad 10011101 \\
+ \quad \sim x \quad 01100100 \\
\hline
-1 \quad 11111111
\end{array}
\]

Increment

- \(\sim x + x = -1 \)
- \(\sim x + x + (-x + 1) = -1 + (-x + 1) \)
- \(\sim x + 1 = -x \)

Warning: Be cautious treating int’s as integers

OK here
Comp. & Incr. Examples

x = 15213

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>(~x)</td>
<td>-15214</td>
<td>C4 92</td>
<td>11000100 10010010</td>
</tr>
<tr>
<td>(~x+1)</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
</tbody>
</table>

0

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>00000000 00000000</td>
</tr>
<tr>
<td>(~0)</td>
<td>(-1)</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>(~0+1)</td>
<td>0</td>
<td>0</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>

Unsigned Addition

Operands: \(w \) bits

True Sum: \(w+1 \) bits

Discard Carry: \(w \) bits

\[
\begin{align*}
\text{UAdd}_w(u, v) &= u + v \mod 2^w \\
UAdd_w(u, v) &= \begin{cases}
 u + v & u + v < 2^w \\
 u + v - 2^w & u + v \geq 2^w
\end{cases}
\end{align*}
\]
Visualizing Integer Addition

Integer Addition

- 4-bit integers u, v
- Compute true sum $\text{Add}_4(u, v)$
- Values increase linearly with u and v
- Forms planar surface
Visualizing Unsigned Addition

Wraps Around

- If true sum $\geq 2^w$
- At most once

True Sum

- 2^{w+1}
- 2^w
- 0

Modular Sum

Overflow

UAdd$_4(u, v)$
Mathematical Properties

Modular Addition Forms an Abelian Group

- Closed under addition
 \[0 \leq \text{UAdd}_w(u, v) \leq 2^w - 1 \]
- Commutative
 \[\text{UAdd}_w(u, v) = \text{UAdd}_w(v, u) \]
- Associative
 \[\text{UAdd}_w(t, \text{UAdd}_w(u, v)) = \text{UAdd}_w(\text{UAdd}_w(t, u), v) \]
- 0 is additive identity
 \[\text{UAdd}_w(u, 0) = u \]
- Every element has additive inverse
 - Let \[\text{UComp}_w(u) = 2^w - u \]
 \[\text{UAdd}_w(u, \text{UComp}_w(u)) = 0 \]
Two’s Complement Addition

Operands: \(w \) bits

\[
\begin{array}{c}
\quad u \\
+ \quad v \\
\hline
u + v
\end{array}
\]

True Sum: \(w+1 \) bits

Discard Carry: \(w \) bits

\(\text{TAdd}_w(u, v) \)

TAdd and UAdd have Identical Bit-Level Behavior

- Signed vs. unsigned addition in C:

  ```
  int s, t, u, v;
  s = (int) ((unsigned) u + (unsigned) v);
  t = u + v
  ```

 Will give \(s == t \)
Characterizing TAdd

Functionality

- True sum requires $w+1$ bits
- Drop off MSB
- Treat remaining bits as 2’s comp. integer

$$TAdd(u, v) = \begin{cases}
 u + v & TMin_w \leq u + v \leq TMax_w \\
 u + v + 2^{w-1} & u + v < TMin_w \\
 u + v - 2^{w-1} & TMax_w < u + v
\end{cases}$$
Visualizing 2's Comp. Addition

Values

- 4-bit two’s comp.
- Range from -8 to +7

Wraps Around

- If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
- If sum $< -2^{w-1}$
 - Becomes positive
 - At most once

$TAdd_4(u, v)$

u

$\neg Over$
Mathematical Properties of TAdd

Isomorphic Algebra to UAdd

- \(TAdd_w(u, v) = U2T(UAdd_w(T2U(u), T2U(v))) \)
 - Since both have identical bit patterns

Two’s Complement Under TAdd Forms a Group

- Closed, Commutative, Associative, 0 is additive identity
- Every element has additive inverse

\[
TComp_w(u) = \begin{cases}
 -u & u \neq TMin_w \\
 TMin_w & u = TMin_w
\end{cases}
\]
Multiplication

Computing Exact Product of w-bit numbers x, y

- Either signed or unsigned

Ranges

- **Unsigned**: $0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1$
 - Up to $2w$ bits
- **Two’s complement min**: $x \times y \geq (-2^{w-1}) \times (2^{w-1} - 1) = -2^{2w-2} + 2^{w-1}$
 - Up to $2w-1$ bits
- **Two’s complement max**: $x \times y \leq (-2^{w-1})^2 = 2^{2w-2}$
 - Up to $2w$ bits, but only for $(TMin_w)^2$

Maintaining Exact Results

- Would need to keep expanding word size with each product computed
- Done in software by “arbitrary precision” arithmetic packages
Unsigned Multiplication in C

Operands: w bits

True Product: 2^w bits

Discard w bits: w bits

Standard Multiplication Function

- Ignores high order w bits

Implements Modular Arithmetic

$$UMult_w(u, v) = u \cdot v \mod 2^w$$
Code Security Example #2

- SUN XDR library
 - Widely used library for transferring data between machines

```c
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size);
```

```
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size);
```

```
malloc(ele_cnt * ele_size)
```

Diagram showing data transfer and memory allocation.
void* copy_elements(void *ele_src[], int ele_cnt, size_t ele_size) {
 /*
 * Allocate buffer for ele_cnt objects, each of ele_size bytes
 * and copy from locations designated by ele_src
 */
 void *result = malloc(ele_cnt * ele_size);
 if (result == NULL)
 /* malloc failed */
 return NULL;
 void *next = result;
 int i;
 for (i = 0; i < ele_cnt; i++) {
 /* Copy object i to destination */
 /* Move pointer to next memory region */
 next += ele_size;
 }
 return result;
}
XDR Vulnerability

```
malloc(ele_cnt * ele_size)
```

What if:
- `ele_cnt` = \(2^{20} + 1\)
- `ele_size` = 4096 = \(2^{12}\)
- Allocation = ??

How can I make this function secure?
Signed Multiplication in C

Operands: w bits

\[u \cdot v \]

True Product: $2w$ bits

Discard w bits: w bits

Standard Multiplication Function

- Ignores high order w bits
- Some of which are different for signed vs. unsigned multiplication
- Lower bits are the same
Power-of-2 Multiply with Shift

Operation
- $u \ll k$ gives $u \cdot 2^k$
- Both signed and unsigned

Operands: w bits
True Product: $w+k$ bits
Discard k bits: w bits

- $u \ll 3 = u \cdot 8$
- $u \ll 5 - u \ll 3 = u \cdot 24$

Most machines shift and add faster than multiply
 - Compiler generates this code automatically
Compiled Multiplication Code

C Function

```c
int mul12(int x)
{
    return x*12;
}
```

Compiled Arithmetic Operations

```
leal (%eax,%eax,2), %eax
sall $2, %eax
```

Explanation

```
t <- x+x*2
return t << 2;
```

- C compiler automatically generates shift/add code when multiplying by constant
Unsigned Power-of-2 Divide with Shift

Quotient of Unsigned by Power of 2

- \(u \gg k \) gives \(\lfloor u / 2^k \rfloor \)
- Uses logical shift

\[
\begin{array}{c|c|c}
\text{Operands:} & u & 2^k \\
\hline
/ & 0 & 1 \\
\text{Division:} & u / 2^k & \text{Result:} \lfloor u / 2^k \rfloor \\
\end{array}
\]

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c}
\text{Division} & \text{Computed} & \text{Hex} & \text{Binary} \\
\hline
x & 15213 & 15213 & 3B 6D & 00111011 01101101 \\
x \gg 1 & 7606.5 & 7606 & 1D B6 & 00011101 10110110 \\
x \gg 4 & 950.8125 & 950 & 03 B6 & 00000011 10110110 \\
x \gg 8 & 59.4257813 & 59 & 00 3B & 00000000 00111011 \\
\end{array}
\]
Compiled Unsigned Division Code

C Function

```c
unsigned udiv8(unsigned x)
{
    return x/8;
}
```

Compiled Arithmetic Operations

```text
shrl $3, %eax
```

Explanation

```text
# Logical shift
return x >> 3;
```

- Uses logical shift for unsigned

For Java Users

- Logical shift written as >>>
Signed Power-of-2 Divide with Shift

Quotient of Signed by Power of 2

- $x \gg k$ gives $\left\lfloor \frac{x}{2^k} \right\rfloor$
- Uses arithmetic shift
- Rounds wrong direction when $u < 0$

<table>
<thead>
<tr>
<th>Operands:</th>
<th>x</th>
<th>2^k</th>
<th>Division:</th>
<th>$x / 2^k$</th>
<th>Result:</th>
<th>RoundDown($x / 2^k$)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>$y \gg 1$</td>
<td>-7606.5</td>
<td>E2 49</td>
<td>11100010 01001001</td>
</tr>
<tr>
<td>$y \gg 4$</td>
<td>-950.8125</td>
<td>FC 49</td>
<td>11111100 01001001</td>
</tr>
<tr>
<td>$y \gg 8$</td>
<td>-59.4257813</td>
<td>FF C4</td>
<td>11111111 11000100</td>
</tr>
</tbody>
</table>
Correct Power-of-2 Divide

Quotient of Negative Number by Power of 2

- **Want** \[\left\lfloor \frac{x}{2^k} \right\rfloor \] (Round Toward 0)
- **Compute as** \[\frac{x+2^k-1}{2^k} \]
 - In C: `(x + (1<<k) -1) >> k`
 - Biases dividend toward 0

Case 1: No rounding

<table>
<thead>
<tr>
<th>Dividend:</th>
<th>(u)</th>
<th>+2(k)-1</th>
<th>(\frac{x}{2^k})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1\ldots\cdot\cdot\cdot0\ldots\cdot\cdot\cdot0\ldots0 \quad k \quad</td>
<td>0\ldots\cdot\cdot\cdot0\ldots1\ldots\cdot\cdot\cdot1\ldots1 \quad</td>
<td>\quad 1\ldots\cdot\cdot\cdot1\ldots1\ldots\cdot\cdot\cdot1\ldots1 \quad</td>
</tr>
<tr>
<td>Divisor:</td>
<td>/ 2(k)</td>
<td></td>
<td>\left\lfloor \frac{u}{2^k} \right\rfloor</td>
</tr>
<tr>
<td></td>
<td>0\ldots\cdot\cdot\cdot0\ldots1\ldots\cdot\cdot\cdot0\ldots0 \quad</td>
<td>\quad \quad</td>
<td>\quad 1\ldots\cdot\cdot\cdot1\ldots1 \quad</td>
</tr>
</tbody>
</table>

Biasing has no effect
Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Dividend:

\[
x + 2^k - 1 = \begin{array}{c}
1 \\
\end{array} \cdot \ldots \cdot \underbrace{1}_{\text{Binary Point}}\ldots \underbrace{1}_{k}
\]

Divisor:

\[
x / 2^k = \begin{array}{c}
0 \\
\end{array} \cdot \ldots \cdot \underbrace{10}_{\text{Incremented by 1}}\ldots \underbrace{00}_{\text{Incremented by 1}}
\]

Biasing adds 1 to final result

Incremented by 1
Compiled Signed Division Code

C Function

```c
int idiv8(int x)
{
    return x/8;
}
```

Compiled Arithmetic Operations

```assembly
    testl %eax, %eax
    js    L4
L3:
    sarl $3, %eax
    ret
L4:
    addl $7, %eax
    jmp   L3
```

Explanation

```assembly
    if x < 0
        x += 7;
    # Arithmetic shift
    return x >> 3;
```

- Uses arithmetic shift for int

For Java Users

- Arith. shift written as `>>`
Properties of Unsigned Arithmetic

Unsigned Multiplication with Addition Forms

Commutative Ring

- Addition is commutative group
- Closed under multiplication
 \[0 \leq \text{UMult}_w(u, v) \leq 2^w - 1 \]
- Multiplication Commutative
 \[\text{UMult}_w(u, v) = \text{UMult}_w(v, u) \]
- Multiplication is Associative
 \[\text{UMult}_w(t, \text{UMult}_w(u, v)) = \text{UMult}_w(\text{UMult}_w(t, u), v) \]
- 1 is multiplicative identity
 \[\text{UMult}_w(u, 1) = u \]
- Multiplication distributes over addition
 \[\text{UMult}_w(t, \text{UAdd}_w(u, v)) = \text{UAdd}_w(\text{UMult}_w(t, u), \text{UMult}_w(t, v)) \]
Properties of Two’s Comp. Arithmetic

Isomorphic Algebras
- Unsigned multiplication and addition
 - Truncating to \(w \) bits
- Two’s complement multiplication and addition
 - Truncating to \(w \) bits

Both Form Rings
- Isomorphic to ring of integers mod \(2^w \)

Comparison to Integer Arithmetic
- Both are rings
- Integers obey ordering properties, e.g.,
 \[
 u > 0 \quad \Rightarrow \quad u + v > v
 \]
 \[
 u > 0, \ v > 0 \quad \Rightarrow \quad u \cdot v > 0
 \]
- These properties are not obeyed by two’s comp. arithmetic
 \[
 T_{Max} + 1 \quad == \quad T_{Min}
 \]
 \[
 -67 \quad 15213 \times 30426 \quad == \quad -10030 \quad (16\text{-bit words})
 \]
Initialization

```c
int x = foo();
int y = bar();
unsigned ux = x;
unsigned uy = y;
```