Verifying Programs with BDDs

Topics
- Representing Boolean functions with Binary Decision Diagrams
- Application to program verification

Verification Example

Do these functions produce identical results?
How could you find out?
How about exhaustive testing?

```c
int abs(int x) {
    int mask = x>>31;
    return (x ^ mask) + ~mask + 1;
}
```

```c
int test_abs(int x) {
    return (x < 0) ? -x : x;
}
```

More Examples

```c
int addXY(int x, int y) {
    return x+y;
}
```

```c
int addYX(int x, int y) {
    return y+x;
}
```

```c
int mulXY(int x, int y) {
    return x*y;
}
```

```c
int mulYX(int x, int y) {
    return y*x;
}
```

How Can We Verify Programs?

Testing
- Exhaustive testing not generally feasible
- Currently, programs only tested over small fraction of possible cases

Formal Verification
- Mathematical “proof” that code is correct

Did Pythagoras show that $a^2 + b^2 = c^2$ by testing?
Bit-Level Program Verification

- View computer word as 32 separate bit values
- Each output becomes Boolean function of inputs

```c
int abs(int x) {
    int mask = x >> 31;
    return (x ^ mask) + ~mask + 1;
}
```

Extracting Boolean Representation

Do these functions produce identical results?

```c
int bitOr(int x, int y) {
    return ~(~x & ~y);
}
```

```c
int test_bitOr(int x, int y) {
    return x | y;
}
```

Straight-Line Evaluation

- \(x\)
- \(y\)
- \(v_1 = \neg x\)
- \(v_2 = \neg y\)
- \(v_3 = v_1 \& v_2\)
- \(v_4 = \neg v_3\)
- \(v_5 = x \mid y\)
- \(t = v_4 == v_5\)

Tabular Function Representation

- List every possible function value
- Function with \(n\) variables

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Algebraic Function Representation

- \(f(x_1, x_2, x_3) = (x_1 + x_2) \cdot x_3\)
- Boolean Algebra

- Representation
- Determining properties of function
 - E.g., deciding whether two expressions are equivalent

- Tabular Function Representation
- Algebraic Function Representation

- Extracting Boolean Representation
- Bit-Level Program Verification
Tree Representation

- **Truth Table**

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- **Decision Tree**

 - Vertex represents decision
 - Follow green (dashed) line for value 0
 - Follow red (solid) line for value 1
 - Function value determined by leaf value

Ordered Binary Decision Diagrams

- **Initial Tree**

- **Reduced Graph**

 \((x_1 + x_3) \cdot x_3\)

- **Canonical representation of Boolean function**

 - Two functions equivalent if and only if graphs isomorphic
 - Can be tested in linear time
 - Desirable property: *simplest form is canonical.*

Example Functions

- **Constants**
 - 0: Unique unsatisfiable function
 - 1: Unique tautology

- **Variable**

 - Treat variable as function

- **Typical Function**

 \((x_1 + x_2) \cdot x_4\)

 - No vertex labeled \(x_3\)
 - Independent of \(x_3\)
 - Many subgraphs shared

- **Odd Parity**

 - Linear representation

More Complex Functions

- **Functions**
 - Add 4-bit words \(a\) and \(b\)
 - Get 4-bit sum \(S\)
 - Carry output bit \(C_{out}\)

- **Shared Representation**

 - Graph with multiple roots
 - 31 nodes for 4-bit adder
 - 571 nodes for 64-bit adder
 - Linear growth!
Symbolic Execution

(3-bit word size)

\[x \]
\[
\begin{array}{cccc}
 0 & 1 & 0 & 1 \\
 1 & 0 & 1 & 1 \\
 0 & 1 & 0 & 1 \\
\end{array}
\]

\[y \]
\[
\begin{array}{cccc}
 0 & 1 & 0 & 1 \\
 1 & 0 & 1 & 1 \\
 1 & 0 & 1 & 1 \\
\end{array}
\]

\[v1 = \neg x \]
\[
\begin{array}{cccc}
 1 & 0 & 1 & 1 \\
 1 & 0 & 1 & 1 \\
 1 & 0 & 1 & 1 \\
\end{array}
\]

\[v2 = \neg y \]
\[
\begin{array}{cccc}
 1 & 0 & 1 & 1 \\
 1 & 0 & 1 & 1 \\
 1 & 0 & 1 & 1 \\
\end{array}
\]

\[v3 = v1 \land v2 \]
\[
\begin{array}{cccc}
 1 & 0 & 1 & 1 \\
 1 & 0 & 1 & 1 \\
 1 & 0 & 1 & 1 \\
\end{array}
\]

\[v4 = \neg v3 \]
\[
\begin{array}{cccc}
 1 & 0 & 1 & 1 \\
 1 & 0 & 1 & 1 \\
 1 & 0 & 1 & 1 \\
\end{array}
\]

\[v5 = x \lor y \]
\[
\begin{array}{cccc}
 1 & 0 & 1 & 1 \\
 1 & 0 & 1 & 1 \\
 1 & 0 & 1 & 1 \\
\end{array}
\]

\[t = v4 == v5 \]
\[
\begin{array}{cccc}
 1 & 0 & 1 & 1 \\
 1 & 0 & 1 & 1 \\
 1 & 0 & 1 & 1 \\
\end{array}
\]

Counterexample Generation

Find values of \(x \) & \(y \) for which these programs produce different results

```
int bitOr(int x, int y)
{
    return ~(~x & ~y);
}
```

```
int bitXor(int x, int y)
{
    return x ^ y;
}
```

Symbolic Execution (cont.)

Straight-Line Evaluation

\[x \]
\[
\begin{array}{cccc}
 0 & 1 & 0 & 1 \\
 1 & 0 & 1 & 1 \\
 0 & 1 & 0 & 1 \\
\end{array}
\]

\[y \]
\[
\begin{array}{cccc}
 0 & 1 & 0 & 1 \\
 1 & 0 & 1 & 1 \\
 1 & 0 & 1 & 1 \\
\end{array}
\]

\[v1 = \neg x \]
\[
\begin{array}{cccc}
 1 & 0 & 1 & 1 \\
 1 & 0 & 1 & 1 \\
 1 & 0 & 1 & 1 \\
\end{array}
\]

\[v2 = \neg y \]
\[
\begin{array}{cccc}
 1 & 0 & 1 & 1 \\
 1 & 0 & 1 & 1 \\
 1 & 0 & 1 & 1 \\
\end{array}
\]

\[v3 = v1 \land v2 \]
\[
\begin{array}{cccc}
 1 & 0 & 1 & 1 \\
 1 & 0 & 1 & 1 \\
 1 & 0 & 1 & 1 \\
\end{array}
\]

\[v4 = \neg v3 \]
\[
\begin{array}{cccc}
 1 & 0 & 1 & 1 \\
 1 & 0 & 1 & 1 \\
 1 & 0 & 1 & 1 \\
\end{array}
\]

\[v5 = x \lor y \]
\[
\begin{array}{cccc}
 1 & 0 & 1 & 1 \\
 1 & 0 & 1 & 1 \\
 1 & 0 & 1 & 1 \\
\end{array}
\]

\[t = v4 == v5 \]
\[
\begin{array}{cccc}
 1 & 0 & 1 & 1 \\
 1 & 0 & 1 & 1 \\
 1 & 0 & 1 & 1 \\
\end{array}
\]

\[x = 111 \]
\[y = 001 \]
Performance: Good

```c
int addXY(int x, int y)
{
    return x+y;
}
```

```
int addYX(int x, int y)
{
    return y+x;
}
```

Performance: Bad

```
int mulXY(int x, int y)
{
    return x*y;
}
```

```
int mulYX(int x, int y)
{
    return y*x;
}
```

Why Is Multiplication Slow?

Multiplication function intractable for BDDs
- Exponential growth, regardless of variable ordering

```
int factorK(int x, int y)
{
    int K = XXXX...X;
    int rangeOK =
        1 < x && x <= y;
    int factorOK =
        x*y == K;
    return
        !(rangeOK && factorOK);
}
```

What if Multiplication were Easy?

```
int one(int x, int y)
{
    return 1;
}
```
Dealing with Conditionals

During Evaluation, Keep Track of:
- Current Context: Under what condition would code be evaluated
- Definedness (for each variable)
 - Has it been assigned a value

```
int abs(int x)
{
    int r;
    if (x < 0)
        r = -x;
    else
        r = x;
    return r;
}
```

```
x  r  Context defined  r value
 1  0  0
1  0  0
```

Dealing with Loops

```
int ilog2(unsigned x)
{
    int r = -1;
    while (x)
    {
        r++;
        x >>= 1;
    }
    return r;
}
```

```
Unrolled
```
(int ilog2(unsigned x)
{
 int r = -1;
 if (x) {
 r++;
 x >>= 1;
 } else return r;
 if (x) {
 r++;
 x >>= 1;
 } else return r;
 . . .
 if (x) {
 r++;
 x >>= 1;
 } else return r;
 error();
}
```

Evaluation

Strengths
- Provides 100% guarantee of correctness
- Performance very good for simple arithmetic functions

Weaknesses
- Important integer functions have exponential blowup
- Not practical for programs that build and operate on large data structures

Some History

Origins
- Lee 1959, Akers 1976
  - Idea of representing Boolean function as BDD
- Hopcroft, Fortune, Schmidt 1978
  - Recognized that ordered BDDs were like finite state machines
  - Polynomial algorithm for equivalence
- Bryant 1986
  - Proposed as useful data structure + efficient algorithms
- McMillan 1987
  - Developed symbolic model checking
  - Method for verifying complex sequential systems
- Bryant 1991
  - Proved that multiplication has exponential BDD
  - No matter how variables are ordered