15-213

“The course that gives CMU its Zip!”

System-Level I/O
November 8, 2006

Topics

Unix I/O

Robust reading and writing
Reading file metadata
Sharing files

I/O redirection

Standard I/O

class20.ppt

Unix I/O Key Characteristics

Classic Unix/Linux I/O:

1/0 operates on linear streams
of Bytes

m Can reposition insertion
point and extend file at end
1/0 tends to be synchronous

m Read or write operation
block until data has been
transferred

Fine grained 1/O

m One key-stroke at atime

m Each I/O event is handled by
the kernel and an
appropriate process

Mainframe 1/O:

1/0 operates on structured
records

m Functions to locate, insert,
remove, update records

1/0 tends to be asynchronous

m Overlap I/0 and computation
within a process

Coarse grained I/O

m Process writes “channel
programs” to be executed
by the I/O hardware

m Many I/O operations are
performed autonomously
with one interrupt at

completion 15-213, F0B

Unix Files

A Unix file is a sequence of m bytes:
m By, By,,B,...,B4

All I/O devices are represented as files:
m /dev/sda2 (/usr disk partition)
m /dev/tty2 (terminal)

Even the kernel is represented as a file:
m /dev/kmem (kernel memory image)
m /proc (kernel data structures)

15-213, F06

Unix File Types

Regular file
m Binary or text file.

m Unix does not know the difference!

Directory file

m A file that contains the names and locations of other files.

Character special and block special files
m Terminals (character special) and disks (block special)

FIFO (named pipe)

m A file type used for interprocess communication

Socket

m A file type used for network communication between

processes

15-213, F06

Unix 1/O

The elegant mapping of files to devices allows kernel to
export simple interface called Unix I/O.

Key Unix idea: All input and output is handled in a
consistent and uniform way.

Basic Unix I/O operations (system calls):

m Opening and closing files
e open(Qand close()

m Changing the current file position (seek)
e Iseek (not discussed)

m Reading and writing a file
® read() and write()

5 15-213, F06

—6—

Opening Files

Opening afile informs the kernel that you are getting
ready to access that file.

int fd; /* file descriptor */

if ((fd = open(*/etc/hosts™, O_RDONLY)) < 0) {
perror(‘'open’™);
exit(1l);

¥

Returns a small identifying integer file descriptor
m fd == -1indicates that an error occurred

Each process created by a Unix shell begins life with
three open files associated with a terminal:

m O0: standard input
m 1: standard output
m 2: standard error 15-213, F'06

Closing Files

Closing a file informs the kernel that you are finished
accessing that file.

int fd; /* file descriptor */
int retval; /* return value */

if ((retval = close(fd)) < 0) {
perror(*'close™);
exit(l);

3

Closing an already closed file is a recipe for disaster in
threaded programs (more on this later)

Moral: Always check return codes, even for seemingly
benign functions such as close()

-7- 15-213, F06

Reading Files

Reading a file copies bytes from the current file
position to memory, and then updates file position.

char buf[512];
int fd; /* file descriptor */
int nbytes; /* number of bytes read */

/* Open file fd ... */

/* Then read up to 512 bytes from file fd */

it ((nbytes = read(fd, buf, sizeof(buf))) < 0) {
perror(“'read™);
exit(l);

}

Returns number of bytes read from file ¥d into buf
m Return type ssize_t s signed integer
m nbytes < O indicates that an error occurred.
m short counts (nbytes < sizeof(buf)) are possible and

_g- arenoterrors! 15-213, F'06

Writing Files

Writing a file copies bytes from memory to the current file
position, and then updates current file position.

char buf[512];
int fd; /* file descriptor */
int nbytes; /* number of bytes read */

/* Open the file fd ... */
/* Then write up to 512 bytes from buf to file fd */
if ((nbytes = write(fd, buf, sizeof(buf)) < 0) {
perror('write™);
exit(l);
}

Returns number of bytes written from buf to file fd.
m nbytes < O indicates that an error occurred.

m As with reads, short counts are possible and are not errors!
Transfers up to 512 bytes from address buf to file fd

9 15-213, F06

Unix I/O Example

Copying standard input to standard output one byte at a
time.

#include "csapp.h”
int main(void)
char c;
while(Read(STDIN_FILENO, &c, 1) != 0)

Write(STDOUT_FILENO, &c, 1);
exit(0);

Note the use of error handling wrappers for read and
write (Appendix B).

—~10 - 15-213, F06

Dealing with Short Counts

Short counts can occur in these situations:
m Encountering (end-of-file) EOF on reads.
m Reading text lines from a terminal.
m Reading and writing network sockets or Unix pipes.

Short counts never occur in these situations:
m Reading from disk files (except for EOF)
m Writing to disk files.

How should you deal with short counts in your code?

m Use the RIO (Robust I/0) package from your textbook’s
csapp -c file (Appendix B).

_11- 15-213, F'06

The RIO Package

RIO is a set of wrappers that provide efficient and robust I/O in

applications such as network programs that are subject to short
counts.

RIO provides two different kinds of functions
m Unbuffered input and output of binary data
® rio_readnand rio_writen
m Buffered input of binary data and text lines
® rio_readlineb and rio_readnb

o Buffered RIO routines are thread-safe and can be interleaved arbitrarily on
the same descriptor.

Download from
csapp.cs.cmu.edu/public/ics/code/src/csapp-c
csapp-cs.cmu.edu/public/ics/code/include/csapp-h

12 15-213, F'06

Unbuffered RIO Input and Output

Same interface as Unix read and write

Especially useful for transferring data on network
sockets

#include "csapp.h"

ssize_t rio_readn(int fd, void *usrbuf, size_t n);
ssize_t rio_writen(int fd, void *usrbuf, size_t n);

Return: num. bytes transferred if OK, 0 on EOF (rio_readn only), -1 on error

m rio_readn returns short count only it encounters EOF.
® Only use it when you know how many bytes to read
m rio_writen never returns a short count.

m Calls to rio_readn and rio_writen can be interleaved

arbitrarily on the same descriptor.

—~ 13- 15-213, F06

Implementation of rio readn

/*
* rio_readn - robustly read n bytes (unbuffered)
*/
ssize_t rio_readn(int fd, void *usrbuf, size_t n)
{

size_t nleft = n;

ssize_t nread;
char *bufp = usrbuf;

while (nleft > 0) {
it ((nread = read(fd, bufp, nleft)) < 0) {
if (errno == EINTR) /* interrupted by sig
handler return */

nread = 0; /* and call read() again */
else
return -1; /* errno set by read() */
else if (nread == 0)
break; /* EOF */
nleft -= nread;

bufp += nread;
b

return (n - nleft); /* return >= 0 */

— 14— 15-213, F'06

Buffered I/O: Motivation

I/0 Applications Read/Write One Character at a Time
m getc, putc, ungetc
m gets
® Read line of text, stopping at newline

Implementing as Calls to Unix 1/O Expensive

m Read & Write involve require Unix kernel calls
® > 10,000 clock cycles

Buffer

already read unread

Buffered Read
m Use Unix read to grab block of characters

m User input functions take one character at a time from buffer
_15- o Refill buffer when empty 15-213, F'06

Buffered I/O: Implementation

m File has associated buffer to hold bytes that have been read
from file but not yet read by user code

Buffer |4— rio_cnt —-|

already read unread

rio_buf -—”’ _ _’,/,
rio_bufptr

typedef struct {

int rio_fd; /* descriptor for this internal buf */
int rio_cnt; /* unread bytes in internal buf */
char *rio_bufptr; /* next unread byte in internal buf */
char rio_buf[RI10_BUFSIZE]; /* internal buffer */

} rio_t;

_16- 15-213, F'06

Buffered RIO Input Functions

Efficiently read text lines and binary data from a file
partially cached in an internal memory buffer

#include "csapp.h"
void rio_readinitb(rio_t *rp, int fd);

ssize_t rio_readlineb(rio_t *rp, void *usrbuf, size_t maxlen);
ssize_t rio_readnb(rio_t *rp, void *usrbuf, size_t n);

Return: num. bytes read if OK, 0 on EOF, -1 on error

m rio_readlineb reads atext line of up to maxlen bytes from
file fd and stores the line in usrbuf.

® Especially useful for reading text lines from network sockets.
m rio_readnb reads up to n bytes from file fd.
m Calls to rio_readlineb and rio_readnb can be interleaved
arbitrarily on the same descriptor.

® Warning: Don’t interleave with calls to rio_readn
17— 15-213, F06

RIO Example

Copying the lines of a text file from standard input to
standard output.

#include "csapp.h”
int main(int argc, char **argv)
{
int n;
rio_t rio;
char buf[MAXLINE];
Rio_readinitb(&rio, STDIN_FILENO);
while((n = Rio_readlineb(&rio, buf, MAXLINE)) != 0)
Rio_writen(STDOUT_FILENO, buf, n);
exit(0);
T
—18— 15-213, F06

File Metadata

Metadata is data about data, in this case file data.

Maintained by kernel, accessed by users with the stat
and fstat functions.

Example of Accessing File Metadata

/* Metadata returned by the stat and fstat functions */

struct stat {
dev_t st_dev; /* device */
ino_t st_ino; /* inode */
mode_t st_mode; /* protection and file type */
nlink_t st_nlink; /* number of hard links */
uid_t st_uid; /* user ID of owner */
gid_t st_gid; /* group ID of owner */
dev_t st_rdev; /* device type (if inode device) */
off t st_size; /* total size, in bytes */
unsigned long st _blksize; /* blocksize for filesystem 1/0 */
unsigned long st_blocks; /* number of blocks allocated */
time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last change */

143

/* statcheck.c - Querying and manipulating a file’s meta data */
#include "csapp.h"

unix> ./statcheck statcheck.c
type: regular, read: yes
unix> chmod 000 statcheck.c
unix> ./statcheck statcheck.c
type: regular, read: no

Stat(argv[1], &stat); unix> ./statcheck ..

2 type: directory, read: yes
it (S_ISREG(stat.st_mode)) unix> ./statcheck /dev/kmem
type = "regular";

int main (int argc, char **argv)

struct stat stat;
char *type, *readok;

else iT (S_ISDIR(stat.st_mode)) (B8R Gl (R EES
type = "directory";

else
type = "other";

if ((stat.st_mode & S_IRUSR)) /* OK to read?*/

readok = "yes'";
else
readok = "no";

printf("type: %s, read: %s\n', type, readok);
exit(0);

_20— 15-213, F'06

How the Unix Kernel Represents
Open Files

The only recommended operation on directories is to Two descriptors referencing two distinct open disk

read its entries X : . :
. o _ _ files. Descriptor 1 (stdout) points to terminal, and
m dirent structure contains information about directory descriptor 4 points to open disk file

m DIR structure contains information about directory while

Accessing Directories

Descriptor table Open file table v-node table

stepping through its entries [one table per process] [shared by all processes] [shared by all processes]
#include <sys/types.h> . .
#include <dirent.h> . File A (terminal) :
stdin fd o — File access|
stdout fd1 —] ; ile si Info in
File size
{ DIR *directory; stderr fd 2 File po_s - stat
struct dirent *de; fd 3 O File type struct
.- fd 4 ~ : :
if (I(directory = opendir(dir_name)))
error('Failed to open directory™); File B (disk -
. _—File access|
while (0 != (de = readdir(directory))) { - File size
printf(""Found file: %s\n", de->d_name); File pos :
refcnt=1 File type
(-:i(;sed ir(directory);
-21- } 15-213, F06 —-22- 15-213, F06

File Sharing How Processes Share Files

Two distinct descriptors sharing the same disk file A child process inherits its parent’'s open files. Here is
through two distinct open file table entries the situation immediately after a fork
m E.g., Calling open twice with the same filename argument
Descriptor Open file table v-node table
) . tables (shared by (shared by
Descriptor table Open file table v-node table all processes) all processes)
(one table (shared by (shared by P v's table
per process) all processes) all processes) aren File A
File A fdo J— File accesq
e = - 3 g
fao | — —+— 7File accesd Ig ; File pos File size
o File pos File size d3 it iz g
fd 3 refcnt=1 File type fd 4 =
fd 4 ~ g 3 . .
Child's table File B
_ fd0 = _—File accesg
File B If,' ; File pos FiIIe size
- File type
File pos fd 3 refcnt=2 : yp
refcnt=1 fd4
-23- : 15-213, F'06 - 24— 15-213, F'06

I/O Redirection

Question: How does a shell implement 1/O redirection?
unix> Is > foo.txt

Answer: By calling the dup2(oldfd, newfd) function
m Copies (per-process) descriptor table entry oldfd to entry

newfd

Descriptor table Descriptor table

before dup2(4,1) after dup2(4,1)
fd O fd 0
fd 1 a fd 1 b
@2 > 2
fd 3 fd 3
fd 4 b fd 4 b

—25- 15-213, F06

I/O Redirection Example

Before calling dup2(4,1), stdout (descriptor 1) points
]Egl) aterminal and descriptor 4 points to an open disk
ile.

Descriptor table Open file table v-node table
(one table (shared by (shared by
per process) all processes) all processes)
File A
stdin fd 0 — File access
stdout fd 1 —] - - -
stderr fd 2 File pos F.IIe size
fd 3 refcnt=1 File type
fd 4 ~ : :

File B -

re __— File access
File size
File type

File pos
refcnt=1

26— - 15-213, F06

I/O Redirection Example (cont)

After calling dup2(4,1), stdout is now redirected to the
disk file pointed at by descriptor 4.

Descriptor table Open file table v-node table

(one table (shared by (shared by
per process) all processes) all processes)
-.FileA .
fd 0 ! S File access
a1 " File pos | "File size |
fd 2 ,_____________: 3'7:7"""“:
fd3 i refent=0 | i_Filetype |
fd 4 ~ ! : ' 5 : :

File B -

\ / File access|

File pos F'|Ie size

refcnt=2 File type

-27 - 15-213, F06

Fun with File Descriptors (1)

#include "csapp.h"
int main(int argc, char *argv[])

{

int fd1, fd2, fd3;

char cl, c2, c3;

char *fname = argv[1];

fdl = Open(fname, O_RDONLY, 0);
fd2 = Open(fname, O_RDONLY, 0);
fd3 = Open(fname, O_RDONLY, 0);
Dup2(fd2, fd3);

Read(fdl, &cl, 1);

Read(fd2, &c2, 1);

Read(fd3, &c3, 1);

printf(*'cl = %c, c2 = %c, ¢c3 = %c\n", cl, c2, c3);
return O;

}

m What would this program print for file containing “abcde”?

og 15-213, F'06

Fun with File Descriptors (2)

#include "‘csapp.h"
int main(int argc, char *argv[])
{
int fdi;
int s = getpid() & Ox1;
char cl, c2;
char *fname = argv[1];
fd1l = Open(fname, O_RDONLY, 0);
Read(fdl, &cl, 1);
it (forkQ) {
/* Parent */
sleep(s);
Read(fd1l, &c2, 1);
printf('Parent: cl = %c, c2 = %c\n", cl, c2);
} else {
/* Child */
sleep(1-s);
Read(fd1, &c2, 1);
printf(*'Chilld: c1 = %c, c2 = %c\n", cl, c2);
return O;
}
m What would this program print for file containing “abcde”?
—29— 15-213, F06

Fun with File Descriptors (3)

#include "csapp.h”
int main(int argc, char *argv[])
{
int fd1, fd2, fd3;
char *fname = argv[1];
fdl = Open(fname, O_CREAT]O_TRUNC|O_RDWR, S_IRUSR|S_IWUSR);
fd2 = Open(fname, O_RDONLY, 0);
Write(fdl, "pgrs™, 4);
fd3 = Open(fname, O_APPEND|O_WRONLY, 0);
Write(fd3, "jklmn', 5);
Dup2(fdl, fd2);
Write(fd2, "wxyz", 4);
Write(fd3, "ef", 2);
return O;

m What would be contents of resulting file?

—~30-— 15-213, F06

Standard I/O Functions

The C standard library (1 1bc.a) contains a collection of
higher-level standard I/O functions
m Documented in Appendix B of K&R.

Examples of standard 1/O functions:
m Opening and closing files (Fopen and fclose)
m Reading and writing bytes (fread and fwrite)
m Reading and writing text lines (Fgets and fputs)
m Formatted reading and writing (fscanf and fprintf)

31— 15-213, F'06

Standard I/O Streams

Standard I/O models open files as streams
m Abstraction for a file descriptor and a buffer in memory.
m Similar to buffered RIO

C programs begin life with three open streams (defined
in stdio.h)

m stdin (standard input)
m stdout (standard output)

m stderr (standard error)

#include <stdio.h>

extern FILE *stdin; /* standard input (descriptor 0) */
extern FILE *stdout; /* standard output (descriptor 1) */
extern FILE *stderr; /* standard error (descriptor 2) */

int main(Q) {
fprintf(stdout, "Hello, world\n™);

3 15-213, F'06

Buffering in Standard 1/O
Standard I/O functions use buffered I/O

printf('h™);
printf('e™);
printf("1™);
printf('I™);
printf(*'o™);
printf(''\n");

buf
|

hlellllTlolwWwl . T.1]

fflush(stdout);

write(l, buf += 6, 6);

33— 15-213, F06

Standard 1/O Buffering in Action

You can see this buffering in action for yourself, using
the always fascinating Unix strace program:

#include <stdio.h>

int mainQ)

printf('h™); linux> strace ./hello

printf('e™); execve("'./hello”, ["hello™], [/* ... */1).-
printf(C'l™); T
printf('1™); write(l, "hello\n", 6...) =6
printf(*'o™); -
printfC'\n'); _exit(0) =7
Fflush(stdout);

exit(0);

—-34 - 15-213, F'06

Unix /O vs. Standard 1/O vs. RIO

Standard I/0O and RIO are implemented using low-level
Unix /0.

fopen fdopen
fread fwrite
fscanf fprintf
sscanf sprintf |»

C application program

fgets fputs Y rio_readn

fflush fseek N rio_writen
fclose Stfand?rd Vo ; RtIO L--»f rio_readinitb
unctions unctions rio_readlineb

open read Uiz 10 fmaiiens rio_readnb

write Iseek [«----

stat close (accessed via system calls)

Which ones should you use in your programs?

35 15-213, F'06

Pros and Cons of Unix /O

Pros

m Unix I/O is the most general and lowest overhead form of I/O.
® All other I/O packages are implemented using Unix I/O
functions.

m Unix I/O provides functions for accessing file metadata.

Cons
m Dealing with short counts is tricky and error prone.

m Efficient reading of text lines requires some form of
buffering, also tricky and error prone.

m Both of these issues are addressed by the standard I/O and
RIO packages.

36— 15-213, F'06

Pros and Cons of Standard 1/O

Pros:

m Buffering increases efficiency by decreasing the number of
read and write system calls.

m Short counts are handled automatically.

Cons:
m Provides no function for accessing file metadata

m Standard I/O is not appropriate for input and output on
network sockets

m There are poorly documented restrictions on streams that
interact badly with restrictions on sockets

-37- 15-213, F06

Choosing I/O Functions

General rule: Use the highest-level I/O functions you
can.

m Many C programmers are able to do all of their work using
the standard 1/O functions.

When to use standard 1/0?
m When working with disk or terminal files.

When to use raw Unix 1/O
m When you need to fetch file metadata.
m In rare cases when you need absolute highest performance.

When to use RIO?
m When you are reading and writing network sockets or pipes.
m Never use standard 1/0O or raw Unix I/O on sockets or pipes.

3g8 15-213, F'06

For Further Information

The Unix bible:

m W. Richard Stevens & Stephen A. Rago, Advanced
Programming in the Unix Environment, 2"¢ Edition, Addison
Wesley, 2005.

® Updated from Stevens’ 1993 book

Stevens is arguably the best technical writer ever.

m Produced authoritative works in:
® Unix programming
® TCP/IP (the protocol that makes the Internet work)
® Unix network programming
® Unix IPC programming.

Tragically, Stevens died Sept 1, 1999
m But others have taken up his legacy

_39- 15-213, F'06

