15-213

“The course that gives CMU its Zip!”

Dynamic Memory Allocation Il

November 3, 2006

Topics

class19.ppt

m Explicit doubly-linked free lists

m Segregated free lists

m Garbage collection

m Review of pointers

m Memory-related perils and pitfalls

Keeping Track of Free Blocks

® Method 1: Implicit list using lengths -- links all blocks

5 4 6 2

® Method 2: Explicit list among the free blocks using
pointers within the free blocks

/_\

5 4 6 2

® Method 3: Segregated free lists
m Different free lists for different size classes

® Method 4: Blocks sorted by size (not discussed)

m Can use a balanced tree (e.g. Red-Black tree) with pointers
within each free block, and the length used as a key

o 15-213, F'06

Explicit Free Lists

1 A [—1 B |1 ¢

Use data space for link pointers
m Typically doubly linked
m Still need boundary tags for coalescing

? 44 4.6 ¢ «_ |64 4| 4 4

K cC T~ Back links

m [t is important to realize that links are not necessarily in the
same order as the blocks

-3- 15-213, F'06

Allocating From Explicit Free Lists

Before:

vﬁ (with splitting)
After: |

= malloc(.)

15-213, F'06

Freeing With Explicit Free Lists

Insertion policy: Where in the free list do you put a
newly freed block?

m LIFO (last-in-first-out) policy
® Insert freed block at the beginning of the free list
® Pro: simple and constant time
® Con: studies suggest fragmentation is worse than address

ordered.
m Address-ordered policy

® Insert freed blocks so that free list blocks are always in address
order

» 1.e. addr(pred) < addr(curr) < addr(succ)
® Con: requires search
® Pro: studies suggest fragmentation is lower than LIFO

5 15-213, F'06

Freeing With a LIFO Policy (Case 1)

free
Before: ()

Root 90

After:

Root O

Insert the freed block at the root of the list

-6— 15-213, F'06

Freeing With a LIFO Policy (Case 2)

Before:

Root

After:

Root

free()

t

[e

l

_

Splice out predecessor block, coalesce both memory
blocks and insert the new block at the root of the list

15-213, F'06

Freeing With a LIFO Policy (Case 3)

Before:

Root

After:

Root

free()

|
|

®
4
I

o)

l

w

Splice out successor block, coalesce both memory
blocks and insert the new block at the root of the list

15-213, F'06

Freeing With a LIFO Policy (Case 4)

Before: A A free() P/ @
Root K % % 90

After: O O
13 174 i

Root 13 l w

Splice out predecessor and successor blocks, coalesce
all 3 memory blocks and insert the new block at the
root of the list

-9- 15-213, F'06

Explicit List Summary

Comparison to implicit list:

m Allocate is linear time in number of free blocks instead of
total blocks --

® much faster allocates when most of the memory is full

m Slightly more complicated allocate and free since needs to
splice blocks in and out of the list

m Some extra space for the links (2 extra words needed for
each block) Does this increase internal frag?

Main use of linked lists is in conjunction with
segregated free lists

m Keep multiple linked lists of different size classes, or
possibly for different types of objects

-10-

15-213, F'06

Keeping Track of Free Blocks

Method 1: Implicit list using lengths -- links all blocks

) 4 6 2

Method 2: Explicit list among the free blocks using
pointers within the free blocks

/\

5 4 6 2

Method 3: Segregated free list
m Different free lists for different size classes

Method 4: Blocks sorted by size

m Can use a balanced tree (e.g. Red-Black tree) with pointers within
each free block, and the length used as a key

-11 - 15-213, F'06

Segregated List (seglist) Allocators

Each size class of blocks has its own free list

1_2 > > > —

5-8 > —

O-inf .,

m Often have separate size class for every small size (2,3,4,...)
m For larger sizes typically have a size class for each power of 2

-12 — 15-213, F'06

Seglist Allocator

Given an array of free lists, each one for some size
class

To allocate a block of size n:
m Search appropriate free list for block of size m >n

m If an appropriate block is found:
® Split block and place fragment on appropriate list (optional)

m If no block is found, try next larger class
m Repeat until block is found

If no block is found:

m Request additional heap memory from OS (using sbrk
function)

m Allocate block of n bytes from this new memory
m Place remainder as a single free block in largest size class.

- 13- 15-213, F'06

Seglist Allocator (cont)

To free a block:
m Coalesce and place on appropriate list (optional)

Advantages of seglist allocators

m Higher throughput
® i.e,logtime for power of two size classes

m Better memory utilization

® First-fit search of segregated free list approximates a best-fit
search of entire heap.

® Extreme case: Giving each block its own size class is
equivalent to best-fit.

-14 - 15-213, F'06

For More Info on Allocators

D. Knuth, “The Art of Computer Programming, Second
Edition”, Addison Wesley, 1973

m The classic reference on dynamic storage allocation

Wilson et al, “Dynamic Storage Allocation: A Survey and
Critical Review”, Proc. 1995 Int’l Workshop on Memory
Management, Kinross, Scotland, Sept, 1995.

m Comprehensive survey
m Available from CS:APP student site (csapp.cs.cmu.edu)

- 15— 15-213, F'06

Implicit Memory Management:
Garbage Collection

Garbage collection: automatic reclamation of heap-
allocated storage -- application never has to free

void foo() {
int *p = malloc(128);
return; /* p block is now garbage */

}

Common in functional languages, scripting languages,
and modern object oriented languages:

m Lisp, ML, Java, Perl, Mathematica,

Variants (conservative garbage collectors) exist for C
and C++

m However, cannot necessarily collect all garbage
—16 — 15-213, F'06

Garbage Collection

How does the memory manager know when memory
can be freed?

m In general we cannot know what is going to be used in the
future since it depends on conditionals

m But we can tell that certain blocks cannot be used if there
are no pointers to them

Need to make certain assumptions about pointers

m Memory manager can distinguish pointers from non-
pointers

m All pointers point to the start of a block

m Cannot hide pointers (e.g., by coercing them to an i1nt, and
then back again)

-17 - 15-213, F'06

Classical GC Algorithms

Mark and sweep collection (McCarthy, 1960)
m Does not move blocks (unless you also “compact”)

Reference counting (Collins, 1960)
m Does not move blocks (not discussed)

Copying collection (Minsky, 1963)

m Moves blocks (not discussed)

Generational Collectors (Lieberman and Hewitt, 1983)
m Collects based on lifetimes

For more information, see Jones and Lin, “Garbage
Collection: Algorithms for Automatic Dynamic
Memory”, John Wiley & Sons, 1996.

—-18 - 15-213, F'06

Memory as a Graph

We view memory as a directed graph
m Each block is a node in the graph

m Each pointer is an edge in the graph

m Locations not in the heap that contain pointers into the heap are
called root nodes (e.g.registers, locations on the stack, global

variables)

Root nodes O Q O
/ \

Heap nodes \ O reachable

O Not-reachable

(garbage)
" O
O

A node (block) is reachable if there is a path from any root to that node.

Non-reachable nodes are garbage (never needed by the application)
- 19—

15-213, F'06

Assumptions For This Lecture

Application
m new(n): returns pointer to new block with all locations cleared
m read(b,1): read location 1 of block b into register
mwrite(b,1,v): write vinto location 1 of block b

Each block will have a header word
m addressed as b[-1], for ablock b
m Used for different purposes in different collectors

Instructions used by the Garbage Collector

m IS ptr(p): determines whether pis a pointer

m length(b): returns the length of block b, not including the header
m get roots(): returns all the roots

—-20 - 15-213, F'06

Mark and Sweep Collecting

Can build on top of malloc/free package
m Allocate using malloc until you “run out of space”

When out of space:
m Use extra mark bit in the head of each block
m Mark: Start at roots and sets mark bit on all reachable memory
m Sweep: Scan all blocks and free blocks that are not marked

root
/\1
Before mark I_\/J/ I I _I

Mark bit set

After mark | i | _I
AN
After sweep I_ free [[free _I

—-21— 15-213, F'06

Mark and Sweep (cont.)

Mark using depth-first traversal of the memory graph

ptr mark(ptr p) {
iIT (1is_ptr(p)) return; // do nothing 1T not pointer
iIT (markBitSet(p)) return; // check 1f already marked
setMarkBit(p); // set the mark bit
for (1=0; 1 < length(p); 1++) // mark all children

mark(pLi]):

return;

+

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {
while (p < end) {
iIT markBitSet(p)
clearMarkBit();
else 1T (allocateBitSet(p))

free(p);
p += length(p);

—-22_ 15-213, F'06

Conservative Mark and Sweep in C

A conservative collector for C programs

m Is_ptr() determines if aword is a pointer by checking if it
points to an allocated block of memory.

m But, in C pointers can point to the middle of a block.

ptr
header 1

So how do we find the beginning of the block?

m Can use balanced tree to keep track of all allocated blocks
where the key iIs the location

m Balanced tree pointers can be stored in header (use two

additional words) head data
siz;/ \\
left right

—-23— 15-213, F'06

Memory-Related Perils and Pitfalls

Dereferencing bad pointers
Reading uninitialized memory
Overwriting memory

Referencing nonexistent variables
Freeing blocks multiple times
Referencing freed blocks

Failing to free blocks

—24 — 15-213, F'06

C operators (K&R p. 53)

Operators Associativity
O 11 > . left to right
' ~ ++ - + - * & (type) sizeof right to left
* /% left to right
+ - left to right
<< >> left to right
< <= > >= left to right
== I= left to right
& left to right
N left to right
I left to right
&& left to right
11 left to right
?: right to left
= += -= *= /= Y= &= N= I= <<= >>= right to left
) left to right

Note: Unary +, -, and * have higher precedence than binary forms

15-213, F'06

Review of C Pointer Declarations

int

int

int

int

int

int

int

int

int

— 26 —

*p

*pl13]

*(pL13D

**p

(*p)[13]

*TO

PO
CCTOIZDO

CCXEBDO)IE]

p is a pointer to int
p is an array[13] of pointer to int
p is an array[13] of pointer to int

p is a pointer to a pointer to an int

p is a pointer to an array[13] of int

fis a function returning a pointer to int

fis a pointer to a function returning int

fis a function returning ptr to an array[13]
of pointers to functions returning int

X is an array[3] of pointers to functions
returning pointers to array[5] of ints

15-213, F'06

Dereferencing Bad Pointers

The classic scant bug

scant(“%d”, val);

—27 — 15-213, F'06

Reading Uninitialized Memory

Assuming that heap data is initialized to zero

/* return y = Ax */

int *matvec(int **A, Int *x) {
int *y = malloc(N*sizeof(int));
int i, j;

for (1=0; I<N; 1++)
for (J=0; J<N; j++)
yLrl += AL 1*x01;
return y;

}

— 28 —

15-213, F'06

Overwriting Memory

Allocating the (possibly) wrong sized object

int **p;
p = malloc(N*sizeof(int));

for (i=0; I<N; i++) {
p[i] = malloc(M*sizeof(int));

}

—-29— 15-213, F'06

Overwriting Memory

Off-by-one error

—30 -

Int **p;
p = malloc(N*si1zeof(int *));

for (1=0; i1<=N; i++) {
p[i] = malloc(M*si1zeof(int));

}

15-213, F'06

Overwriting Memory

Not checking the max string size

char s[8];
int 1;

gets(s);

/* reads ““123456789” from stdin */

Basis for classic buffer overflow attacks
m 1988 Internet worm

m Modern attacks on Web servers

m AOL/Microsoft IM war

—-31-—

15-213, F'06

Overwriting Memory

Referencing a pointer instead of the object it points to

int *BinheapDelete(int **binheap, Int *size) {
Int *packet;
packet = binheap[O0O];
binheap[0] = binheap[*size - 1];
*si1ze--;
Heapify(binheap, *size, 0);
return(packet);

-32— 15-213, F'06

Overwriting Memory

Misunderstanding pointer arithmetic

— 33 -

Int *search(int *p, Int val) {

while (*p && *p = val)
p += sizeof(int);

return p;

}

15-213, F'06

Referencing Nonexistent Variables

Forgetting that local variables disappear when a
function returns

int *foo () {
int val;

return &val;

}

—34— 15-213, F'06

Freeing Blocks Multiple Times

Nasty!

— 35—

x = malloc(N*sizeof(int));
<manipulate x>
free(X);

y = malloc(M*sizeof(int));

<manipulate y>
free(X);

15-213, F'06

Evil!

— 36 —

Referencing Freed Blocks

x = malloc(N*sizeof(int));

<manipulate x>
free(X);

y ;“malloc(M*sizeof(int));
for (i=0; i<M; i++)
yLil = x[ui]++;

15-213, F'06

Failing to Free Blocks
(Memory Leaks)

Slow, long-term killer!

—37-—

foo() {

int *x = malloc(N*si1zeof(int));

return;

}

15-213, F'06

Failing to Free Blocks
(Memory Leaks)

Freeing only part of a data structure

- 38—

struct list {
int val;
struct list *next;

};
foo() {

struct list *head = malloc(sizeof(struct list));
head->val = O;
head->next = NULL;

<create and manipulate the rest of the list>

free(head):
return;

15-213, F'06

Dealing With Memory Bugs

Conventional debugger (gdb)

m Good for finding bad pointer dereferences
m Hard to detect the other memory bugs

Debugging mal loc (CSRI UToronto mal loc)
m Wrapper around conventional malloc

m Detects memory bugs at malloc and free boundaries
® Memory overwrites that corrupt heap structures
® Some instances of freeing blocks multiple times
® Memory leaks

m Cannot detect all memory bugs
® Overwrites into the middle of allocated blocks
® Freeing block twice that has been reallocated in the interim
® Referencing freed blocks

-39 — 15-213, F'06

Dealing With Memory Bugs (cont.)

Binary translator: valgrind (Linux), Purify)
m Powerful debugging and analysis technique
m Rewrites text section of executable object file
m Can detect all errors as debugging malloc

m Can also check each individual reference at runtime
® Bad pointers
® Overwriting
® Referencing outside of allocated block

Garbage collection (Boehm-Weiser Conservative GC)
m Let the system free blocks instead of the programmer.

—40 - 15-213, F'06

