15-213
“The course that gives CMU its Zip!”

Verifying Programs with BDDs
Sept. 22, 2006

Topics
- Representing Boolean functions with Binary Decision Diagrams
- Application to program verification
Do these functions produce identical results?

How could you find out?

How about exhaustive testing?

```c
int abs(int x) {
    int mask = x>>31;
    return (x ^ mask) + ~mask + 1;
}
```

```c
int test_abs(int x) {
    return (x < 0) ? -x : x;
}
```
More Examples

```
int addXY(int x, int y) {
    return x+y;
}
```

```
int addYX(int x, int y) {
    return y+x;
}
```

```
int mulXY(int x, int y) {
    return x*y;
}
```

```
int mulYX(int x, int y) {
    return y*x;
}
```
How Can We Verify Programs?

Testing
- Exhaustive testing not generally feasible
- Currently, programs only tested over small fraction of possible cases

Formal Verification
- Mathematical “proof” that code is correct

![Pythagorean Theorem Diagram]

- Did Pythagoras show that \(a^2 + b^2 = c^2 \) by testing?
Bit-Level Program Verification

- View computer word as 32 separate bit values
- Each output becomes Boolean function of inputs

```c
int abs(int x) {
    int mask = x>>31;
    return (x ^ mask) + ~mask + 1;
}
```
Extracting Boolean Representation

Do these functions produce identical results?

```c
int bitOr(int x, int y)
{
    return ~(~x & ~y);
}
```

```c
int test_bitOr(int x, int y)
{
    return x | y;
}
```

Straight-Line Evaluation

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| v1 = ~x |
| v2 = ~y |
| v3 = v1 & v2 |
| v4 = ~v3 |
| v5 = x | y |
| t = v4 == v5 |
Tabular Function Representation

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- List every possible function value

Complexity
- Function with n variables
Algebraic Function Representation

\[f(x_1, x_2, x_3) = (x_1 + x_2) \cdot x_3 \]

- **Boolean Algebra**

Complexity

- **Representation**
- **Determining properties of function**
 - E.g., deciding whether two expressions are equivalent
Tree Representation

Truth Table

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Decision Tree

- Vertex represents decision
- Follow green (dashed) line for value 0
- Follow red (solid) line for value 1
- Function value determined by leaf value

Complexity
Ordered Binary Decision Diagrams

Initial Tree

Reduced Graph

$(x_1 + x_2) \cdot x_3$

Canonical representation of Boolean function

- Two functions equivalent if and only if graphs isomorphic
 - Can be tested in linear time
- Desirable property: *simplest form is canonical.*
Example Functions

Constants

0 Unique unsatisfiable function
1 Unique tautology

Variable

Treat variable as function

Typical Function

\[(x_1 + x_2) \cdot x_4 \]
- No vertex labeled \(x_3 \)
- Independent of \(x_3 \)
- Many subgraphs shared

Odd Parity

Linear representation
More Complex Functions

Functions
- Add 4-bit words a and b
- Get 4-bit sum S
- Carry output bit $Cout$

Shared Representation
- Graph with multiple roots
- 31 nodes for 4-bit adder
- 571 nodes for 64-bit adder
- Linear growth!
Symbolic Execution

(3-bit word size)

\[
\begin{align*}
&x = x_2 x_1 x_0 \\
&y = y_2 y_1 y_0 \\
v1 &= \sim x \\
v2 &= \sim y
\end{align*}
\]
Symbolic Execution (cont.)

\[v_3 = v_1 \& v_2 \]

\[v_4 = \neg v_3 \]

\[v_5 = x \mid y \]

\[t = v_4 == v_5 \]
Counterexample Generation

Find values of \(x \) & \(y \) for which these programs produce different results

```c
int bitOr(int x, int y) {
    return ~(~x & ~y);
}
```

```c
int bitXor(int x, int y) {
    return x ^ y;
}
```

Straight-Line Evaluation

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td></td>
</tr>
<tr>
<td>(y)</td>
<td></td>
</tr>
<tr>
<td>(v1 = \neg x)</td>
<td></td>
</tr>
<tr>
<td>(v2 = \neg y)</td>
<td></td>
</tr>
<tr>
<td>(v3 = v1 & v2)</td>
<td></td>
</tr>
<tr>
<td>(v4 = \neg v3)</td>
<td></td>
</tr>
<tr>
<td>(v5 = x ^ y)</td>
<td></td>
</tr>
<tr>
<td>(t = v4 == v5)</td>
<td></td>
</tr>
</tbody>
</table>
Symbolic Execution

\[v_4 = \sim v_3 \]

\[v_5 = x \land y \]

\[t = v_4 == v_5 \]

\[x = 111 \]

\[y = 001 \]
Performance: Good

```c
int addXY(int x, int y) {
    return x+y;
}
```

```c
int addYX(int x, int y) {
    return y+x;
}
```

![Graph showing performance comparison between enumerate and BDD for different word sizes.]
Performance: Bad

```c
int mulXY(int x, int y) {
    return x*y;
}

int mulYX(int x, int y) {
    return y*x;
}
```

The diagram shows a comparison of performance for different word sizes, with 'Enumerate' and 'BDD' algorithms. The x-axis represents word size, while the y-axis represents time in seconds. The graph indicates that the 'Enumerate' method becomes significantly slower as word size increases, whereas the 'BDD' method remains relatively constant.
Why Is Multiplication Slow?

Multiplication function intractable for BDDs

- Exponential growth, regardless of variable ordering

Node Counts

<table>
<thead>
<tr>
<th>Bits</th>
<th>Add</th>
<th>Mult</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>21</td>
<td>155</td>
</tr>
<tr>
<td>8</td>
<td>41</td>
<td>14560</td>
</tr>
</tbody>
</table>
What if Multiplication were Easy?

int factorK(int x, int y) {
 int K = XXXX...X;
 int rangeOK = 1 < x && x <= y;
 int factorOK = x*y == K;
 return !(rangeOK && factorOK);
}

int one(int x, int y) {
 return 1;
}
Dealing with Conditionals

During Evaluation, Keep Track of:

- Current Context: Under what condition would code be evaluated
- Definedness (for each variable)
 - Has it been assigned a value

```c
int abs(int x)
{
    int r;
    if (x < 0)
        r = -x;
    else
        r = x;
    return r;
}
```

<table>
<thead>
<tr>
<th>Context defined</th>
<th>r value</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>1</td>
</tr>
<tr>
<td>t1 = x<0</td>
<td>1</td>
</tr>
<tr>
<td>v1 = -x</td>
<td>t1</td>
</tr>
<tr>
<td>r = v1</td>
<td>t1</td>
</tr>
<tr>
<td>r = x</td>
<td>!t1</td>
</tr>
<tr>
<td>v2 = r</td>
<td>1</td>
</tr>
</tbody>
</table>
Dealing with Loops

Unroll

- Turn into bounded sequence of conditionals
 - Default limit = 33
- Signal runtime error if don’t complete within limit

```c
int ilog2(unsigned x)
{
    int r = -1;
    while (x) {
        r++; x >>= 1;
    }
    return r;
}
```

Unrolled

```c
int ilog2(unsigned x)
{
    int r = 31;
    if (x) {
        r++; x >>= 1;
    } else return r;
    if (x) {
        r++; x >>= 1;
    } else return r;...
    if (x) {
        r++; x >>= 1;
    } else return r;
    error();
}
```
Evaluation

Strengths

- Provides 100% guarantee of correctness
- Performance very good for simple arithmetic functions

Weaknesses

- Important integer functions have exponential blowup
- Not practical for programs that build and operate on large data structures
Some History

Origins

- **Lee 1959, Akers 1976**
 - Idea of representing Boolean function as BDD

- **Hopcroft, Fortune, Schmidt 1978**
 - Recognized that ordered BDDs were like finite state machines
 - Polynomial algorithm for equivalence

- **Bryant 1986**
 - Proposed as useful data structure + efficient algorithms

- **McMillan 1987**
 - Developed symbolic model checking
 - Method for verifying complex sequential systems

- **Bryant 1991**
 - Proved that multiplication has exponential BDD
 - No matter how variables are ordered