Topics
- Representing Boolean functions with Binary Decision Diagrams
- Application to program verification

Verification Example

Do these functions produce identical results?
How could you find out?
How about exhaustive testing?

int abs(int x) {
 int mask = x >> 31;
 return (x ^ mask) + ~mask + 1;
}

int test_abs(int x) {
 return (x < 0) ? -x : x;
}

More Examples

int addXY(int x, int y) {
 return x + y;
}

int addYX(int x, int y) {
 return y + x;
}

int mulXY(int x, int y) {
 return x * y;
}

int mulYX(int x, int y) {
 return y * x;
}

How Can We Verify Programs?

Testing
- Exhaustive testing not generally feasible
- Currently, programs only tested over small fraction of possible cases

Formal Verification
- Mathematical “proof” that code is correct

Did Pythagoras show that $a^2 + b^2 = c^2$ by testing?
Bit-Level Program Verification

- View computer word as 32 separate bit values
- Each output becomes Boolean function of inputs

Extracting Boolean Representation

```c
int abs(int x) {
    int mask = x >> 31;
    return (x ^ mask) + ~mask + 1;
}
```

```c
int bitOr(int x, int y) {
    return ~(~x & ~y);
}
```

```c
int test_bitOr(int x, int y) {
    return x | y;
}
```

Do these functions produce identical results?

```c
int test_bitOr(int x, int y) {
    return x | y;
}
```

```c
int test_bitOr(int x, int y) {
    return x | y;
}
```

Straight-Line Evaluation

```
x
y
v1 = ~x
v2 = ~y
v3 = v1 & v2
v4 = ~v3
v5 = x | y
t = v4 == v5
```

Tabular Function Representation

- List every possible function value

Complexity

- Function with \(n \) variables

Algebraic Function Representation

```c
int abs(int x) {
    int mask = x >> 31;
    return (x ^ mask) + ~mask + 1;
}
```

```c
int bitOr(int x, int y) {
    return ~(~x & ~y);
}
```

```c
int test_bitOr(int x, int y) {
    return x | y;
}
```

Do these functions produce identical results?

```
x
y
v1 = ~x
v2 = ~y
v3 = v1 & v2
v4 = ~v3
v5 = x | y
t = v4 == v5
```

Complexity

- Representation
- Determining properties of function
 - E.g., deciding whether two expressions are equivalent
Tree Representation

Truth Table

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- Vertex represents decision
- Follow green (dashed) line for value 0
- Follow red (solid) line for value 1
- Function value determined by leaf value

Ordered Binary Decision Diagrams

Initial Tree

Reduced Graph

$(x_1 + x_3) \cdot x_3$

Canonical representation of Boolean function

- Two functions equivalent if and only if graphs isomorphic
 - Can be tested in linear time
- Desirable property: simplest form is canonical.

Example Functions

Constants
- 0: Unique unsatisfiable function
- 1: Unique tautology

Variable
- Treat variable as function

Typical Function
- $(x_1 + x_2) \cdot x_4$
- No vertex labeled x_3
 - Independent of x_3
- Many subgraphs shared

Odd Parity

More Complex Functions

Functions
- Add 4-bit words a and b
- Get 4-bit sum S
- Carry output bit $Cout$

Shared Representation
- Graph with multiple roots
- 31 nodes for 4-bit adder
- 571 nodes for 64-bit adder
- Linear growth!
Symbolic Execution (3-bit word size)

x

- $v_1 = \bar{x}$
- $v_2 = \bar{y}$

y

- $v_3 = v_1 \land v_2$
- $v_4 = \bar{v}_3$
- $v_5 = x \lor y$
- $t = v_4 == v_5$

Counterexample Generation

int bitOr(int x, int y)

```c
int bitOr(int x, int y) {
    return ~(~x & ~y);
}
```

int bitXor(int x, int y)

```c
int bitXor(int x, int y) {
    return x ^ y;
}
```

Find values of x & y for which these programs produce different results.
Performance: Good

```c
int addXY(int x, int y)
{
    return x+y;
}
```

<table>
<thead>
<tr>
<th>Word Size</th>
<th>Add-4</th>
<th>Multiplication-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>21</td>
<td>155</td>
</tr>
<tr>
<td>16</td>
<td>41</td>
<td>14560</td>
</tr>
</tbody>
</table>

Performance: Bad

```c
int addYX(int x, int y)
{
    return y+x;
}
```

Why Is Multiplication Slow?

Multiplication function intractable for BDDs
- Exponential growth, regardless of variable ordering

```
int factorK(int x, int y)
{
    int K = XXXX...X;
    int rangeOK =
        1 < x && x <= y;
    int factorOK =
        x*y == K;
    return
        !(rangeOK && factorOK);
}
```

What if Multiplication were Easy?

```c
int one(int x, int y)
{
    return 1;
}
```
Dealing with Conditionals

During Evaluation, Keep Track of:
- Current Context: Under what condition would code be evaluated
- Definedness (for each variable)
 - Has it been assigned a value

```plaintext
int abs(int x)
{
    int r;
    if (x < 0)
        r = -x;
    else
        r = x;
    return r;
}
```

<table>
<thead>
<tr>
<th>Context</th>
<th>Defined</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>t1 = x<0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>v1 = -x</td>
<td>t1</td>
<td>0</td>
</tr>
<tr>
<td>r = v1</td>
<td>t1</td>
<td>t1?v1:0</td>
</tr>
<tr>
<td>r = x</td>
<td>!t1</td>
<td>1</td>
</tr>
<tr>
<td>v2 = r</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Dealing with Loops

Unrolled
```plaintext
int ilog2(unsigned x)
{
    int r = 31;
    if (x) {
        r++; x >>= 1;
    } else return r;
    if (x) {
        r++; x >>= 1;
    } else return r;
    . . .
    if (x) {
        r++; x >>= 1;
    } else return r;
    error();
}
```

Unroll
- Turn into bounded sequence of conditionals
 - Default limit = 33
- Signal runtime error if don't complete within limit

Evaluation

Strengths
- Provides 100% guarantee of correctness
- Performance very good for simple arithmetic functions

Weaknesses
- Important integer functions have exponential blowup
- Not practical for programs that build and operate on large data structures

Some History

Origins
- Lee 1959, Akers 1976
 - Idea of representing Boolean function as BDD
- Hopcroft, Fortune, Schmidt 1978
 - Recognized that ordered BDDs were like finite state machines
 - Polynomial algorithm for equivalence
- Bryant 1986
 - Proposed as useful data structure + efficient algorithms
- McMillan 1987
 - Developed symbolic model checking
 - Method for verifying complex sequential systems
- Bryant 1991
 - Proved that multiplication has exponential BDD
 - No matter how variables are ordered