15-213
“The Class That Gives CMU Its Zip!”

Bits, Bytes, and Integers
September 1, 2006

Topics

- Representing information as bits
- Bit-level manipulations
 - Boolean algebra
 - Expressing in C
- Representations of Integers
 - Basic properties and operations
 - Implications for C
Binary Representations

Base 2 Number Representation

- Represent 15213_{10} as 11101101101101_2
- Represent 1.20_{10} as $1.0011001100110011[0011]..._2$
- Represent 1.5213×10^4 as $1.1101101101101_2 \times 2^{13}$

Electronic Implementation

- Easy to store with bistable elements
- Reliably transmitted on noisy and inaccurate wires

![Diagram showing voltage levels with 0 and 1 represented by voltage changes]
Encoding Byte Values

Byte = 8 bits

- **Binary** \(00000000_2\) to \(11111111_2\)
- **Decimal**: \(0_{10}\) to \(255_{10}\)
 - First digit must not be 0 in C
- **Hexadecimal** \(00_{16}\) to \(FF_{16}\)
 - Base 16 number representation
 - Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
 - Write \(FA1D37B_{16}\) in C as \(0xFA1D37B\)
 » Or \(0xfa1d37b\)

<table>
<thead>
<tr>
<th>Hex</th>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>1010</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>1011</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>1100</td>
</tr>
<tr>
<td>D</td>
<td>13</td>
<td>1101</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td>1111</td>
</tr>
</tbody>
</table>
Byte-Oriented Memory Organization

Programs Refer to Virtual Addresses

- Conceptually very large array of bytes
- Actually implemented with hierarchy of different memory types
- System provides address space private to particular "process"
 - Program being executed
 - Program can clobber its own data, but not that of others

Compiler + Run-Time System Control Allocation

- Where different program objects should be stored
- All allocation within single virtual address space
Machine Words

Machine Has “Word Size”

- Nominal size of integer-valued data
 - Including addresses
- Most current machines use 32 bits (4 bytes) words
 - Limits addresses to 4GB
 - » Users can access 3GB
 - Becoming too small for memory-intensive applications
- High-end systems use 64 bits (8 bytes) words
 - Potential address space ≈ 1.8×10^{19} bytes
 - x86-64 machines support 48-bit addresses: 256 Terabytes
- Machines support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes
Word-Oriented Memory Organization

Addresses Specify Byte Locations

- **Address of first byte in word**
- **Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)**

<table>
<thead>
<tr>
<th>32-bit Words</th>
<th>64-bit Words</th>
<th>Bytes</th>
<th>Addr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addr = 0000</td>
<td>Addr = 0000</td>
<td></td>
<td>0000</td>
</tr>
<tr>
<td>Addr = 0004</td>
<td></td>
<td></td>
<td>0001</td>
</tr>
<tr>
<td>Addr = 0008</td>
<td></td>
<td></td>
<td>0002</td>
</tr>
<tr>
<td>Addr = 0012</td>
<td></td>
<td></td>
<td>0003</td>
</tr>
<tr>
<td></td>
<td>Addr = 0008</td>
<td></td>
<td>0004</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0005</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0006</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0007</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0008</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0009</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0010</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0011</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0012</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0013</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0015</td>
</tr>
</tbody>
</table>
Data Representations

Sizes of C Objects (in Bytes)

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>Typical 32-bit</th>
<th>Intel IA32</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>unsigned</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>long int</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>char</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>long double</td>
<td>–</td>
<td>10/12</td>
<td>10/12</td>
</tr>
<tr>
<td>char *</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

» Or any other pointer
Byte Ordering

How should bytes within multi-byte word be ordered in memory?

Conventions

- Big Endian: Sun, PPC Mac
 - Least significant byte has highest address
- Little Endian: x86
 - Least significant byte has lowest address
Byte Ordering Example

Big Endian
- Least significant byte has highest address

Little Endian
- Least significant byte has lowest address

Example
- Variable \(x \) has 4-byte representation \(0x01234567 \)
- Address given by \&x is \(0x100 \)

<table>
<thead>
<tr>
<th>Big Endian</th>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>01</td>
<td>23</td>
<td>45</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Little Endian</th>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>67</td>
<td>45</td>
<td>23</td>
<td>01</td>
</tr>
</tbody>
</table>
Reading Byte-Reversed Listings

Disassembly

- Text representation of binary machine code
- Generated by program that reads the machine code

Example Fragment

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction Code</th>
<th>Assembly Rendition</th>
</tr>
</thead>
<tbody>
<tr>
<td>8048365:</td>
<td>5b</td>
<td>pop %ebx</td>
</tr>
<tr>
<td>8048366:</td>
<td>81 c3 ab 12 00 00</td>
<td>add $0x12ab,%ebx</td>
</tr>
<tr>
<td>804836c:</td>
<td>83 bb 28 00 00 00 00</td>
<td>cmpl $0x0,0x28 (%ebx)</td>
</tr>
</tbody>
</table>

Deciphering Numbers

- Value: 0x12ab
- Pad to 4 bytes: 0x000012ab
- Split into bytes: 00 00 12 ab
- Reverse: ab 12 00 00
Examining Data Representations

Code to Print Byte Representation of Data

- Casting pointer to unsigned char * creates byte array

```c
typedef unsigned char *pointer;

void show_bytes(pointer start, int len)
{
    int i;
    for (i = 0; i < len; i++)
        printf("0x%p\t0x%.2x\n", start+i, start[i]);
    printf("\n");
}
```

Printf directives:
- %p: Print pointer
- %x: Print Hexadecimal
show_bytes Execution Example

```c
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux):

```c
int a = 15213;
0x11ffffffcb8 0x6d
0x11ffffffcb9 0x3b
0x11ffffffcba 0x00
0x11ffffffcbb 0x00
```
Representing Integers

int A = 15213;
int B = -15213;
long int C = 15213;

Decimal: 15213
Binary: 0011 1011 0110 1101
Hex: 3 B 6 D

Two’s complement representation (Covered later)
Representing Pointers

```
int B = -15213;
int *P = &B;
```
Representing Strings

Strings in C

- Represented by array of characters
- Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character “0” has code 0x30
 - Digit i has code $0x30+i$
- String should be null-terminated
 - Final character = 0

Compatibility

- Byte ordering not an issue

```c
char S[6] = "15213";
```
Boolean Algebra

Developed by George Boole in 19th Century

- Algebraic representation of logic
 - Encode “True” as 1 and “False” as 0

And
- \(A \& B = 1 \) when both \(A=1 \) and \(B=1 \)

\[
\begin{array}{c|cc}
& 0 & 1 \\
\hline
0 & 0 & 0 \\
1 & 0 & 1 \\
\end{array}
\]

Or
- \(A | B = 1 \) when either \(A=1 \) or \(B=1 \)

\[
\begin{array}{c|cc}
& 0 & 1 \\
\hline
0 & 0 & 1 \\
1 & 1 & 1 \\
\end{array}
\]

Not
- \(\sim A = 1 \) when \(A=0 \)

\[
\begin{array}{c|c}
\sim & 0 & 1 \\
\hline
0 & 1 \\
1 & 0 \\
\end{array}
\]

Exclusive-Or (Xor)
- \(A ^ B = 1 \) when either \(A=1 \) or \(B=1 \), but not both

\[
\begin{array}{c|cc}
^ & 0 & 1 \\
\hline
0 & 0 & 1 \\
1 & 1 & 0 \\
\end{array}
\]
Application of Boolean Algebra

Applied to Digital Systems by Claude Shannon

- 1937 MIT Master’s Thesis
- Reason about networks of relay switches
 - Encode closed switch as 1, open switch as 0

Connection when

\[A \& \sim B \mid \sim A \& B \]

= \(A^\wedge B \)
General Boolean Algebras

Operate on Bit Vectors

- Operations applied bitwise

\[
\begin{array}{c}
01101001 \\
\& 01010101 \\
01000001
\end{array}
\begin{array}{c}
01101001 \\
| 01010101 \\
01111101
\end{array}
\begin{array}{c}
01101001 \\
^ 01010101 \\
00111100
\end{array}
\begin{array}{c}
01010101 \\
~ 01010101 \\
10101010
\end{array}
\]

All of the Properties of Boolean Algebra Apply
Representing & Manipulating Sets

Representation

- **Width** w bit vector represents subsets of $\{0, \ldots, w-1\}$
- $a_j = 1$ if $j \in A$

\[
\begin{align*}
01101001 & \quad \{0, 3, 5, 6\} \\
76543210 \\
01010101 & \quad \{0, 2, 4, 6\} \\
76543210
\end{align*}
\]

Operations

- $\&$ Intersection $01000001 \quad \{0, 6\}$
- $|$ Union $01111101 \quad \{0, 2, 3, 4, 5, 6\}$
- $^\wedge$ Symmetric difference $00111100 \quad \{2, 3, 4, 5\}$
- \sim Complement $10101010 \quad \{1, 3, 5, 7\}$
Bit-Level Operations in C

Operations &, |, ~, ^ Available in C

- Apply to any “integral” data type
 - long, int, short, char, unsigned
- View arguments as bit vectors
- Arguments applied bit-wise

Examples (Char data type)

- ~0x41 --> 0xBE
 ~01000001_2 --> 10111110_2
- ~0x00 --> 0xFF
 ~00000000_2 --> 11111111_2
- 0x69 & 0x55 --> 0x41
 01101001_2 & 01010101_2 --> 01000001_2
- 0x69 | 0x55 --> 0x7D
 01101001_2 | 01010101_2 --> 01111101_2
Contrast: Logic Operations in C

Contrast to Logical Operators

- \&\&, ||, !
 - View 0 as “False”
 - Anything nonzero as “True”
 - Always return 0 or 1
 - Early termination

Examples (char data type)

- !0x41 → 0x00
- !0x00 → 0x01
- !!0x41 → 0x01

- 0x69 && 0x55 → 0x01
- 0x69 || 0x55 → 0x01
- \(p \&\& *p \) (avoids null pointer access)
Shift Operations

Left Shift: \(x << y \)
- Shift bit-vector \(x \) left \(y \) positions
 - Throw away extra bits on left
 - Fill with 0’s on right

Right Shift: \(x >> y \)
- Shift bit-vector \(x \) right \(y \) positions
 - Throw away extra bits on right
- Logical shift
 - Fill with 0’s on left
- Arithmetic shift
 - Replicate most significant bit on right

Strange Behavior
- Shift amount > word size

<table>
<thead>
<tr>
<th>Argument (x)</th>
<th>01100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<< 3)</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. (>> 2)</td>
<td>00011000</td>
</tr>
<tr>
<td>Arith. (>> 2)</td>
<td>00011000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argument (x)</th>
<th>10100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<< 3)</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. (>> 2)</td>
<td>00101000</td>
</tr>
<tr>
<td>Arith. (>> 2)</td>
<td>11101000</td>
</tr>
</tbody>
</table>
Integer C Puzzles

- Assume 32-bit word size, two’s complement integers
- For each of the following C expressions, either:
 - Argue that is true for all argument values
 - Give example where not true

Initialization

```c
int x = foo();
int y = bar();
unsigned ux = x;
unsigned uy = y;
```

- \(x < 0 \) \Rightarrow (x \times 2 < 0)
- \(ux \geq 0 \)
- \(x \& 7 == 7 \) \Rightarrow (x<<30 < 0)
- \(ux > -1 \)
- \(x > y \) \Rightarrow -x < -y
- \(x \times x \geq 0 \)
- \(x > 0 && y > 0 \) \Rightarrow x + y > 0
- \(x \geq 0 \) \Rightarrow -x \leq 0
- \(x \leq 0 \) \Rightarrow -x \geq 0
- \((x|-x) >> 31 == -1 \)
- \(ux >> 3 == ux/8 \)
- \(x >> 3 == x/8 \)
- \(x \& (x-1) != 0 \)
Encoding Integers

Unsigned

\[B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \]

Two’s Complement

\[B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \]

- **C short 2 bytes long**

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>(y)</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
</tbody>
</table>

Sign Bit

- For 2’s complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative
Encoding Example (Cont.)

Given:

- \(x = \) 15213: 00111011 01101101
- \(y = \) -15213: 11000100 10010011

<table>
<thead>
<tr>
<th>Weight</th>
<th>15213</th>
<th>-15213</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>64</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>128</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>256</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>512</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1024</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2048</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4096</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8192</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>16384</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>-32768</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Sum:
- \(x = 15213 \)
- \(y = -15213 \)
Numeric Ranges

Unsigned Values

- **U_{Min}** = 0
 - 000...0
- **U_{Max}** = $2^w - 1$
 - 111...1

Two’s Complement Values

- **T_{Min}** = -2^{w-1}
 - 100...0
- **T_{Max}** = $2^{w-1} - 1$
 - 011...1

Other Values

- Minus 1
 - 111...1

Values for $W = 16$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>65535</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>Tmax</td>
<td>32767</td>
<td>7F FF</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>Tmin</td>
<td>-32768</td>
<td>80 00</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Values for Different Word Sizes

<table>
<thead>
<tr>
<th>W</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>255</td>
<td>65,535</td>
<td>4,294,967,295</td>
<td>18,446,744,073,709,551,615</td>
</tr>
<tr>
<td>Tmax</td>
<td>127</td>
<td>32,767</td>
<td>2,147,483,647</td>
<td>9,223,372,036,854,775,807</td>
</tr>
<tr>
<td>Tmin</td>
<td>-128</td>
<td>-32,768</td>
<td>-2,147,483,648</td>
<td>-9,223,372,036,854,775,808</td>
</tr>
</tbody>
</table>

Observations

- $|T\text{Min}| = T\text{Max} + 1$
 - Asymmetric range
- $U\text{Max} = 2 \times T\text{Max} + 1$

C Programming

- `#include <limits.h>`
 - K&R App. B11
- Declares constants, e.g.,
 - `ULONG_MAX`
 - `LONG_MAX`
 - `LONG_MIN`
- Values platform-specific
Unsigned & Signed Numeric Values

<table>
<thead>
<tr>
<th>X</th>
<th>B2U(X)</th>
<th>B2T(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>-1</td>
</tr>
</tbody>
</table>

Equivalence
- Same encodings for nonnegative values

Uniqueness
- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

⇒ Can Invert Mappings
- $\text{U2B}(x) = \text{B2U}^{-1}(x)$
 - Bit pattern for unsigned integer
- $\text{T2B}(x) = \text{B2T}^{-1}(x)$
 - Bit pattern for two’s comp integer
Relation between Signed & Unsigned

Two’s Complement → T2U → B2U → Unsigned

Maintain Same Bit Pattern

\[u_x = \begin{cases}
 x & x \geq 0 \\
 x + 2^w & x < 0
\end{cases} \]

Large negative weight → Large positive weight

\(w-1 \) \(0 \)

\(u_x \) \(+ \) \(+ \) \(+ \) \(\cdot \) \(\cdot \) \(\cdot \) \(\cdot \) \(+ \) \(+ \) \(+ \)

\(x \) \(- \) \(+ \) \(+ \) \(\cdot \) \(\cdot \) \(\cdot \) \(\cdot \) \(+ \) \(+ \) \(+ \)
Signed vs. Unsigned in C

Constants
- By default are considered to be signed integers
- Unsigned if have “U” as suffix
 0U, 4294967259U

Casting
- Explicit casting between signed & unsigned same as U2T and T2U
  ```c
  int tx, ty;
  unsigned ux, uy;
  tx = (int) ux;
  uy = (unsigned) ty;
  ```
- Implicit casting also occurs via assignments and procedure calls
  ```c
  tx = ux;
  uy = ty;
  ```
Casting Surprises

Expression Evaluation

- If mix unsigned and signed in single expression, signed values implicitly cast to unsigned
- Including comparison operations `<`, `>`, `==`, `<=`, `>=`
- Examples for \(W = 32 \)

<table>
<thead>
<tr>
<th>Constant\textsubscript{1}</th>
<th>Constant\textsubscript{2}</th>
<th>Relation</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0U</td>
<td>==</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td><</td>
<td>signed</td>
</tr>
<tr>
<td>-1</td>
<td>0U</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>-2147483648</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>2147483647U</td>
<td>-2147483648</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>-2</td>
<td>></td>
<td>signed</td>
</tr>
<tr>
<td>(unsigned) -1</td>
<td>-2</td>
<td>></td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>2147483648U</td>
<td><</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>(int) 2147483648U</td>
<td>></td>
<td>signed</td>
</tr>
</tbody>
</table>
Explanation of Casting Surprises

2’s Comp. → Unsigned

- Ordering Inversion
- Negative → Big Positive

Explanation of Casting Surprises

2’s Comp. Range

Unsigned Range

TMax

UMax

UMax - 1

TMax + 1

TMax
Sign Extension

Task:
- Given w-bit signed integer x
- Convert it to $w+k$-bit integer with same value

Rule:
- Make k copies of sign bit:
- $X' = x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_0$

k copies of MSB

\[x \quad \bullet \bullet \bullet \quad w \]

\[\bullet \bullet \bullet \quad w \]

\[X' \quad \bullet \bullet \bullet \quad w \]

\[\bullet \bullet \bullet \quad k \]

\[X' \quad \bullet \bullet \bullet \quad w \]

- 33 –
Sign Extension Example

```
short int x = 15213;
int    ix = (int) x;
short int y = -15213;
int    iy = (int) y;
```

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>ix</td>
<td>15213</td>
<td>00 3B 6D</td>
<td>00000000 00000000 00111011 01101101</td>
</tr>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>iy</td>
<td>-15213</td>
<td>FF FF C4 93</td>
<td>11111111 11111111 11000100 10010011</td>
</tr>
</tbody>
</table>

- Converting from smaller to larger integer data type
- C automatically performs sign extension
Why Should I Use Unsigned?

Don’t Use Just Because Number Nonzero

- Easy to make mistakes
  ```c
  unsigned i;
  for (i = cnt-2; i >= 0; i--)
      a[i] += a[i+1];
  ```

- Can be very subtle
  ```c
  #define DELTA sizeof(int)
  int i;
  for (i = CNT; i-DELTA >= 0; i-= DELTA)
      ...
  ```

Do Use When Performing Modular Arithmetic

- Multiprecision arithmetic

Do Use When Need Extra Bit’s Worth of Range

- Working right up to limit of word size
Negating with Complement & Increment

Claim: Following Holds for 2’s Complement

\[\sim x + 1 == -x \]

Complement

- Observation: \(\sim x + x == 1111...11_2 == -1 \)

\[
\begin{array}{c}
x & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
\sim x & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
\hline
-1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}
\]

Increment

- \(\sim x + x + (\sim x + 1) == -1 + (\sim x + 1) \)
- \(\sim x + 1 == -x \)

Warning: Be cautious treating int’s as integers

- OK here
Comp. & Incr. Examples

\(x = 15213 \)

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>(\sim x)</td>
<td>-15214</td>
<td>C4 92</td>
<td>11000100 10010010</td>
</tr>
<tr>
<td>(\sim x + 1)</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011 1</td>
</tr>
<tr>
<td>(y)</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
</tbody>
</table>

\[0 \]

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>00000000 00000000</td>
</tr>
<tr>
<td>(\sim 0)</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>(\sim 0 + 1)</td>
<td>0</td>
<td>0</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>
Unsigned Addition

Operands: w bits

\[
\begin{array}{c}
\text{u} \\
+ \text{v} \\
\hline
\text{u+v}
\end{array}
\]

True Sum: $w+1$ bits

Discard Carry: w bits

\[
\text{UAdd}_w(u, v)
\]

Standard Addition Function

- Ignores carry output

Implements Modular Arithmetic

\[
s = \text{UAdd}_w(u, v) = u + v \mod 2^w
\]

\[
\text{UAdd}_w(u, v) = \begin{cases}
 u + v & u + v < 2^w \\
 u + v - 2^w & u + v \geq 2^w
\end{cases}
\]
Visualizing Integer Addition

Integer Addition

- 4-bit integers u, v
- Compute true sum $\text{Add}_4(u, v)$
- Values increase linearly with u and v
- Forms planar surface
Visualizing Unsigned Addition

Wraps Around

- If true sum $\geq 2^w$
- At most once

True Sum

2^{w+1}

2^w

0

Modular Sum

Overflow

Overflow

$UAdd_4(u, v)$
Modular Addition Forms an *Abelian Group*

- **Closed under addition**
 \[0 \leq \text{UAdd}_w(u, v) \leq 2^w - 1\]

- **Commutative**
 \[\text{UAdd}_w(u, v) = \text{UAdd}_w(v, u)\]

- **Associative**
 \[\text{UAdd}_w(t, \text{UAdd}_w(u, v)) = \text{UAdd}_w(\text{UAdd}_w(t, u), v)\]

- **0 is additive identity**
 \[\text{UAdd}_w(u, 0) = u\]

- **Every element has additive inverse**
 - Let \[\text{UComp}_w(u) = 2^w - u\]
 \[\text{UAdd}_w(u, \text{UComp}_w(u)) = 0\]
Two’s Complement Addition

Operands: w bits

$$
\begin{array}{c}
u \\
+ \ v \\
\hline
u + v
\end{array}
$$

True Sum: $w+1$ bits

Discard Carry: w bits

$\text{TAdd}_w(u, v)$

TAdd and UAdd have Identical Bit-Level Behavior

- Signed vs. unsigned addition in C:

  ```c
  int s, t, u, v;
  s = (int) ((unsigned) u + (unsigned) v);
  t = u + v
  ```

- Will give $s == t$
Characterizing TAdd

Functionality

- True sum requires \(w+1 \) bits
- Drop off MSB
- Treat remaining bits as 2’s comp. integer

\[
TAdd(u, v) = \begin{cases}
 u + v + 2^{w-1} & u + v < TMin_w \\
 u + v & TMin_w \leq u + v \leq TMax_w \\
 u + v - 2^{w-1} & TMax_w < u + v \end{cases}
\]
Visualizing 2’s Comp. Addition

Values
- 4-bit two’s comp.
- Range from -8 to +7

Wraps Around
- If sum \(\geq 2^{w-1} \)
 - Becomes negative
 - At most once
- If sum < \(-2^{w-1}\)
 - Becomes positive
 - At most once
Mathematical Properties of TAdd

Isomorphic Algebra to UAdd
- $TAdd_w(u, v) = U2T(UAdd_w(T2U(u), T2U(v)))$
 - Since both have identical bit patterns

Two’s Complement Under TAdd Forms a Group
- Closed, Commutative, Associative, 0 is additive identity
- Every element has additive inverse

$$TComp_w(u) = \begin{cases}
-u & u \neq TMin_w \\
TMin_w & u = TMin_w
\end{cases}$$
Multiplication

Computing Exact Product of w-bit numbers x, y

- Either signed or unsigned

Ranges

- **Unsigned:** $0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1$
 - Up to $2w$ bits

- **Two’s complement min:** $x \times y \geq (-2^{w-1})(2^{w-1} - 1) = -2^{2w-2} + 2^{w-1}$
 - Up to $2w-1$ bits

- **Two’s complement max:** $x \times y \leq (-2^{w-1})^2 = 2^{2w-2}$
 - Up to $2w$ bits, but only for $(TMin_w)^2$

Maintaining Exact Results

- Would need to keep expanding word size with each product computed

- Done in software by “arbitrary precision” arithmetic packages
Unsigned Multiplication in C

Operands: w bits

True Product: $2w$ bits

Discard w bits: w bits

Standard Multiplication Function

- Ignores high order w bits

Implements Modular Arithmetic

$$\text{UMult}_w(u, v) = u \cdot v \mod 2^w$$
Signed Multiplication in C

Operands: \(w \) bits

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(u)</th>
<th>(\times)</th>
<th>(v)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

True Product: \(2w \) bits

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[u \cdot v \]

Discard \(w \) bits: \(w \) bits

\[\text{TMult}_w(u, v) \]

Standard Multiplication Function

- Ignores high order \(w \) bits
- Some of which are different for signed vs. unsigned multiplication
- Lower bits are the same
Power-of-2 Multiply with Shift

Operation

- \(u \ll k \) gives \(u \cdot 2^k \)
- Both signed and unsigned

Operands: \(w \) bits

\[
\begin{array}{c}
\text{u} \\
\text{\textbullet\textbullet\textbullet\textbullet\textbullet\textbullet\textbullet\textbullet}
\end{array}
\begin{array}{c}
\text{*} \\
\text{\textbullet\textbullet\textbullet\textbullet\textbullet\textbullet\textbullet\textbullet}
\end{array}
\begin{array}{c}
\text{2^k} \\
\text{0 \ldots 010 \ldots 00}
\end{array}
\]

True Product: \(w+k \) bits

\[
\begin{array}{c}
\text{u \cdot 2^k} \\
\text{\textbullet\textbullet\textbullet\textbullet\textbullet\textbullet\textbullet\textbullet}
\end{array}
\begin{array}{c}
\text{\textbullet\textbullet\textbullet\textbullet\textbullet\textbullet\textbullet\textbullet}
\end{array}
\begin{array}{c}
\text{0 \ldots 00}
\end{array}
\]

Discard \(k \) bits: \(w \) bits

\[
\begin{array}{c}
\text{UMult}_w(u, 2^k) \\
\text{\textbullet\textbullet\textbullet\textbullet\textbullet\textbullet\textbullet\textbullet}
\end{array}
\begin{array}{c}
\text{\textbullet\textbullet\textbullet\textbullet\textbullet\textbullet\textbullet\textbullet}
\end{array}
\begin{array}{c}
\text{0 \ldots 00}
\end{array}
\]

\[
\begin{array}{c}
\text{TMult}_w(u, 2^k) \\
\text{\textbullet\textbullet\textbullet\textbullet\textbullet\textbullet\textbullet\textbullet}
\end{array}
\begin{array}{c}
\text{\textbullet\textbullet\textbullet\textbullet\textbullet\textbullet\textbullet\textbullet}
\end{array}
\begin{array}{c}
\text{0 \ldots 00}
\end{array}
\]

Examples

- \(u \ll 3 \) \(== \) \(u \cdot 8 \)
- \(u \ll 5 \) \(-\) \(u \ll 3 \) \(== \) \(u \cdot 24 \)
- Most machines shift and add faster than multiply
 - Compiler generates this code automatically
C Function

```c
int mul12(int x) {
    return x*12;
}
```

Compiled Arithmetic Operations

```
leal (%eax,%eax,2), %eax
sall $2, %eax
```

Explanation

```
t <- x+x*2
return t << 2;
```

- C compiler automatically generates shift/add code when multiplying by constant
Unsigned Power-of-2 Divide with Shift

Quotient of Unsigned by Power of 2

- $u >> k$ gives $\lfloor u / 2^k \rfloor$
- Uses logical shift

Division:

<table>
<thead>
<tr>
<th>Operands:</th>
<th>Division:</th>
<th>Result:</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>$\lfloor u / 2^k \rfloor$</td>
<td>$\lfloor u / 2^k \rfloor$</td>
</tr>
</tbody>
</table>

Example:

<table>
<thead>
<tr>
<th>x</th>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>$x >> 1$</td>
<td>7606.5</td>
<td>7606</td>
<td>1D B6</td>
<td>00011101 10110110</td>
</tr>
<tr>
<td>$x >> 4$</td>
<td>950.8125</td>
<td>950</td>
<td>03 B6</td>
<td>00000011 10110110</td>
</tr>
<tr>
<td>$x >> 8$</td>
<td>59.4257813</td>
<td>59</td>
<td>00 3B</td>
<td>00000000 00111011</td>
</tr>
</tbody>
</table>
Compiled Unsigned Division Code

C Function

```c
unsigned udiv8(unsigned x)
{
    return x/8;
}
```

Compiled Arithmetic Operations

```
shrl $3, %eax
```

Explanation

```
# Logical shift
return x >> 3;
```

- Uses logical shift for unsigned

For Java Users

- Logical shift written as >>>

For Java Users

- Logical shift written as >>>

-- 52 --
Signed Power-of-2 Divide with Shift

Quotient of Signed by Power of 2
- $x >> k$ gives $\lfloor x / 2^k \rfloor$
- Uses arithmetic shift
- Rounds wrong direction when $u < 0$

<table>
<thead>
<tr>
<th>Operands:</th>
<th>x</th>
<th>$/ 2^k$</th>
<th>$x / 2^k$</th>
<th>Binary Point</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>\cdots</td>
<td>$0 \cdots 0 \underbrace{1}_k \cdots 0 \cdots 0$</td>
<td>\cdots</td>
<td>\cdots</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>$y >> 1$</td>
<td>-7606.5</td>
<td>E2 49</td>
<td>11100010 01001001</td>
</tr>
<tr>
<td>$y >> 4$</td>
<td>-950.8125</td>
<td>FC 49</td>
<td>11111100 01001001</td>
</tr>
<tr>
<td>$y >> 8$</td>
<td>-59.4257813</td>
<td>FF C4</td>
<td>11111111 11000100</td>
</tr>
</tbody>
</table>
Correct Power-of-2 Divide

Quotient of Negative Number by Power of 2

- Want \(\left\lfloor \frac{x}{2^k} \right\rfloor \) (Round Toward 0)
- Compute as \(\left\lfloor \frac{x+2^k-1}{2^k} \right\rfloor \)
 - In C: \(x + (1<<k) - 1 \) >> k
 - Biases dividend toward 0

Case 1: No rounding

<table>
<thead>
<tr>
<th>Dividend:</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u)</td>
<td>(1 \cdots 0 \cdots 0 0)</td>
</tr>
<tr>
<td>(+2^k-1)</td>
<td>(0 \cdots 0 0 1 \cdots 1 1)</td>
</tr>
<tr>
<td>(u / 2^k)</td>
<td>(1 \cdots 1 \cdots 1 1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Divisor:</th>
<th>2^k</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u / 2^k)</td>
<td>(0 \cdots 0 1 \cdots 0 0)</td>
</tr>
</tbody>
</table>

\textbf{Biasing has no effect}
Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Dividend:

\[
\begin{array}{c}
 x \\
 +2^k - 1
\end{array}
\]

Divisor:

\[
\begin{array}{c}
 2^k \\
 \left\lfloor \frac{x}{2^k} \right\rfloor
\end{array}
\]

Biasing adds 1 to final result

Incremented by 1
Compiled Signed Division Code

C Function

```c
int idiv8(int x) {
    return x/8;
}
```

Compiled Arithmetic Operations

```assembly
testl %eax, %eax
js  L4
L3:
sarl $3, %eax
ret
L4:
addl $7, %eax
jmp L3
```

Explanation

```assembly
if x < 0
    x += 7;
# Arithmetic shift
return x >> 3;
```

- Uses arithmetic shift for int

For Java Users

- Arith. shift written as `>>`

For Java Users

- Uses arithmetic shift for int

- Arith. shift written as `>>`
Properties of Unsigned Arithmetic

Unsigned Multiplication with Addition Forms

Commutative Ring

- Addition is commutative group
- Closed under multiplication
 \[0 \leq \text{UMult}_w(u, v) \leq 2^w - 1 \]
- Multiplication Commutative
 \[\text{UMult}_w(u, v) = \text{UMult}_w(v, u) \]
- Multiplication is Associative
 \[\text{UMult}_w(t, \text{UMult}_w(u, v)) = \text{UMult}_w(\text{UMult}_w(t, u), v) \]
- 1 is multiplicative identity
 \[\text{UMult}_w(u, 1) = u \]
- Multiplication distributes over addition
 \[\text{UMult}_w(t, \text{UAdd}_w(u, v)) = \text{UAdd}_w(\text{UMult}_w(t, u), \text{UMult}_w(t, v)) \]
Properties of Two’s Comp. Arithmetic

Isomorphic Algebras

- Unsigned multiplication and addition
 - Truncating to \(w \) bits
- Two’s complement multiplication and addition
 - Truncating to \(w \) bits

Both Form Rings

- Isomorphic to ring of integers mod \(2^w \)

Comparison to Integer Arithmetic

- Both are rings
- Integers obey ordering properties, e.g.,
 \[
 u > 0 \quad \Rightarrow \quad u + v > v \\
 u > 0, \ v > 0 \quad \Rightarrow \quad u \cdot v > 0
 \]
- These properties are not obeyed by two’s comp. arithmetic
 \[
 T_{Max} + 1 = T_{Min}
 \]
 \[
 15213 \times 30426 = -10030 \ \text{(16-bit words)}
 \]
Integer C Puzzles Revisited

- $x < 0 \implies (x*2 < 0)$
- $ux >= 0$
- $x & 7 == 7 \implies (x<<30) < 0$
- $ux > -1$
- $x > y \implies -x < -y$
- $x * x >= 0$
- $x > 0 && y > 0 \implies x + y > 0$
- $x >= 0 \implies -x <= 0$
- $x <= 0 \implies -x >= 0$
- $(x|-x)>>31 == -1$
- $ux >> 3 == ux/8$
- $x >> 3 == x/8$
- $x & (x-1) != 0$

Initialization

```c
int x = foo();
int y = bar();
unsigned ux = x;
unsigned uy = y;
```