15-213
“The Class That Gives CMU lts Zip!”

Introduction to
Computer Systems

Randal E. Bryant
August 30, 2006

Topics:
m Theme
m Five great realities of computer systems
m How this fits within CS curriculum

class0la.ppt

15-213 F '06

Course Theme

m Abstraction is good, but don't forget reality!

Courses to date emphasize abstraction
m Abstract data types
m Asymptotic analysis

These abstractions have limits
m Especially in the presence of bugs
m Need to understand underlying implementations

Useful outcomes
m Become more effective programmers
@ Able to find and eliminate bugs efficiently
® Able to tune program performance
m Prepare for later “systems” classes in CS & ECE
® Compilers, Operating Systems, Networks, Computer
Architecture, Embedded Systems

15-213, F'06

Great Reality #1

Int’s are not Integers, Float 's are not Reals

Examples
m |s x220?
® Float's: Yes!
® Int’s:
» 40000 * 40000 --> 1600000000
» 50000 * 50000 -->?7?
mis(x+y)+z = x+(y+2z)?
® Unsigned & Signed Int’s: Yes!
® Float's:
» (1e20 + -1e20) + 3.14 --> 3.14
» 1e20 + (-1e20 + 3.14) --> ??

15-213, F06

Computer Arithmetic

Does not generate random values
m Arithmetic operations have important mathematical
properties

Cannot assume “usual” properties
m Due to finiteness of representations
m Integer operations satisfy “ring” properties
o Commutativity, associativity, distributivity
m Floating point operations satisfy “ordering” propert
® Monotonicity, values of signs

Observation
= Need to understand which abstractions apply in whic
contexts
m Important issues for compiler writers and serious a

. programmers

ies

h

pplication

15-213, F'06




Great Reality #2

You've got to know assembly

Chances are, you ’ll never write program in assembly
m Compilers are much better & more patientthanyoua re

Understanding assembly key to machine  -level
execution model
m Behavior of programs in presence of bugs
@ High-level language model breaks down
m Tuning program performance
e Understanding sources of program inefficiency
m Implementing system software
e Compiler has machine code as target
® Operating systems must manage process state
m Creating / fighting malware

) o
s ® x86 assembly is the language of choice! 15.213, F'06

Assembly Code Example

Time Stamp Counter
m Special 64-bit register in Intel-compatible machine s
m Incremented every clock cycle
m Read with rdtsc instruction

Application
m Measure time required by procedure
® |n units of clock cycles

double t;

start_counter();

PO;

t = get_counter();

printf( " P required %f clock cycles\n ")

15-213, F'06

Code to Read Counter

m Write small amount of assembly code using GCC’s asm
facility

m Inserts assembly code into machine code generatedb y
compiler

static unsigned cyc_hi =0;
static unsigned cyc_lo =0;

/* Set *hi and *lo to the high and low order bits
of the cycle counter.
*
void access_counter(unsigned *hi, unsigned *lo)

asm("rdtsc; novl %edx, %; novl %eax, 94"
"=r" (*hi), "=r" (*lo)

: "%edx", "Y%eax");

15-213, F06

Great Reality #3

Memory Matters: Random Access Memory is an
un-physical abstraction

Memory is not unbounded
m It must be allocated and managed
m Many applications are memory dominated

Memory referencing bugs especially pernicious
m Effects are distant in both time and space

Memory performance is not uniform
m Cache and virtual memory effects can greatly affect
performance
m Adapting program to characteristics of memory syste
lead to major speed improvements

program

m can

15-213, F'06




Memory Referencing Bug Example

double fun(int i)

volatile double d[1] = {3.14};

volatile long int a[2];

afi] = 1073741824; /* Possibly out of bounds */
return d[O];

fun(0) —> 3.14

fun(1) —> 3.14

fun(2) —> 3.1399998664856

fun(3) —> 2.00000061035156

fun(4) —> 3.14 , then segmentation fault

-9-— 15-213, F'06

Referencing Bug Explanation

m C does not implement bounds checking

Saved State 4
d7 ... d4 3
Location accessed
d3 ... do 2 by fun(i)
a[1] 1
a[0] 0

m Out of range write can affect other parts of progra  m state

~10—

15-213, F'06

Memory Referencing Errors

C and C++ do not provide any memory protection
m Out of bounds array references
m Invalid pointer values
m Abuses of malloc/free

Can lead to nasty bugs

m Whether or not bug has any effect depends on system and
compiler

m Action at a distance
e Corrupted object logically unrelated to one being a ccessed
e Effect of bug may be first observed long after it i s generated

How can | deal with this?
m Program in Java, Lisp, or ML
m Understand what possible interactions may occur

- :
Ca Use or develop tools to detect referencing errors 15213, Fos

Memory System Performance
Example

j+)
i++)

void copyij(int src[2048][2048], void copyiji(int src[2048][2048],
int dst[2048][2048]) int dst[2048][2048])

{ {

int ij; int ij;

for( i =0; i <2048; i++) — —for( j =0; | <2048;

for( j =0; | <2048; |j ++)/><-- for( i =0; i <2048;
dstilj] = srefif]; dstiJj] = srefif];

} }

59,393,288 clock cycles

~ S

21.5 times slower!

m Hierarchical memory organization

m Performance depends on access patterns
@ Including how step through multi-dimensional array

—12-

1,277,877,876 clock cycles

(Measured on 2GHz
Intel Pentium 4)

15-213, F'06




The Memory Mountain

Pentium Ill Xeon
550 MHz
16 KB on-chip L1 d-cache

- 16 KB on-chip L1 i-cache
g 512 KB off-chip unified
= L2 cache
2 8o
S
g
$ e ""' ‘ copyji
3
- ‘

40 “ ' '.\
&
Stride (words) 7} Working set size (bytes)
-13- 15-213, F'06

Memory Performance Example

Implementations of Matrix Multiplication
= Multiple ways to nest loops

Tk *
for (i=0; i<n; i++) {
for (j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)

c[i][i] = sum;

}

sum += afilik] * bIKIL;

Tk T
for (j=0; j<n; j++) {
for (i=0; i<n; i++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += ali][k] * b{K][i];
c[i][j] = sum

}

} }

— 14— 15-213, F'06

Matmult Performance (Alpha 21164)

Too big for L1 Cache Too big for L2 Cache

matrix size (n)

— 15— 15-213, F06

Blocked matmult perf (Alpha 21164)

160

140

120

100
—e— biK
bikj
80%-7
—A— ik
ikj
60 !
40
20

0

50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500
matrix size (n)

16— 15-213, F06




Great Reality #4

There's more to performance than asymptotic
complexity

Constant factors matter too!
m Easily see 10:1 performance range depending on how code
written
m Must optimize at multiple levels: algorithm, data
representations, procedures, and loops

Must understand system to optimize performance
m How programs compiled and executed

m How to measure program performance and identify
bottlenecks

m How to improve performance without destroying code
modularity and generality

17— 15-213, F06

Great Reality #5

Computers do more than execute programs

They need to get data in and out

m |/O system critical to program reliability and perf ormance

They communicate with each other over networks
m Many system-level issues arise in presence of netwo
e Concurrent operations by autonomous processes
® Coping with unreliable media
@ Cross platform compatibility
® Complex performance issues

—18—

rk

15-213, F'06

Role within Curriculum

cs 441 o2 csai1 ECE 447
Networks B 9 Compilers Architecture
Systems
X 1 / ECE 349
Network Processes Machine Code Embedded
Protocols Mem. Mgmt Optimization Systems
\ | /S _—
Cs 212 Memory System
Execution SCSt 2:13 A
Models ystems
f Transition from Abstract to
Data Structures
Applications Concrete!
Programming .
| m From: high-level language
model
Funilirﬁiﬁtal eiite ;
Smies C Programming m To: underlying

implementation
19— 15-213, F'06

Course Perspective

Most Systems Courses are Builder -Centric

m Computer Architecture
@ Design pipelined processor in Verilog
m Operating Systems
® Implement large portions of operating system

m Compilers
® Write compiler for simple language

m Networking
e Implement and simulate network protocols

—20-

15-213, F'06




Course Perspective (Cont.)

Our Course is Programmer -Centric

m Purpose is to show how by knowing more about the
underlying system, one can be more effective as a
programmer

= Enable you to

® Write programs that are more reliable and efficient
® Incorporate features that require hooks into OS
» E.g., concurrency, signal handlers
m Not just a course for dedicated hackers
® We bring out the hidden hacker in everyone
m Cover material in this course that you won't see el ~ sewhere

21— 15-213, F06




