
Recitation 5
October 11, 2004 15-213: Intro to Computer Systems

Example 1
Bryant, Nowatzyk

Example 1: Optimizing C Code

#ifndef _GRAPHICS_H

#define _GRAPHICS_H

typedef struct

{

unsigned char R;

unsigned char G;

unsigned char B;

unsigned char alpha;

} pixel;

typedef struct

{

pixel **map;

int length, width;

} bitmap;

#endif

Optimizations/Speedups:

• Swap i-j order in plot_bitmap.

• Inline plot_pixel.

• Use local variable in bitmap_checksum so we don’t
always reference result.

• Try unrolling loops in bitmap_checksum.

#include "graphics.h"

void plot_pixel(pixel p , int posx, int posy)

{

/* do some stuff to plot it */

return;

}

void plot_bitmap(bitmap b)

{

int i, j;

for (j = 0; j < b.width; j++)

for (i = 0; i < b.length; i++)

plot_pixel(b.map[i][j], i, j);

}

int bitmap_checksum(bitmap b, unsigned *result)

{

int i, j;

result = 0; / initial checksum value is 0 */

for (i = 0; i < b.length; i++)

for (j = 0; j < b.width; j++)

{

pixel *p = &b.map[i][j];

unsigned up = *(unsigned *)p;

*result = *result ^ up;

}

return 0; /* no errors */

}

int main(int argc, char *argv[])

{

return 0;

}

1

Recitation 5
October 11, 2004 15-213: Intro to Computer Systems

Example 2
Bryant, Nowatzyk

Example 2: Pipelined Processing

Consider the following function for computing the product of an array of n integers. We have unrolled the loop by
a factor of 3.

int aprod(int a[], int n)

{

int i, x, y, z;

int r = 1;

for (i = 0; i < n-2; i+= 3)

{

x = a[i]; y = a[i+1]; z = a[i+2];

r = r * x * y * z; // Product computation

}

for (; i < n; i++)

r *= a[i];

return r;

}

For the line labeled Product computation, we can use parentheses to create 5 different associations of the compu-
tation, as follows:

r = ((r * x) * y) * z; // A1

r = (r * (x * y)) * z; // A2

r = r * ((x * y) * z); // A3

r = r * (x * (y * z)); // A4

r = (r * x) * (y * z); // A5

We express the performance of the function in terms of the number of cycles per element (CPE). As described in
the book, this measure assumes the run time, measured in clock cycles, for an array of length n is a function of
the form Cn + K where Cn is the CPE.

We measured the 5 versions of the function on an Intel Pentium III. Recall from Figure 5.12 of the book that
the integer multiplication operation on this machine has a latency of 4 cycles and an issue time of 1 cycle. The
following table shows some values of the CPE, and other values missing. The measured CPE values are those that
were actually observed. “Theoretical CPE” means that performance that would be achieved if the only limiting
factor were the latency and issue time of the integer multiplier.

The Pentium III has only 2 Integer Multiplication units. You may neglect time used by load unit.

Version Measured CPE Theoretical CPE
A1 4.00 4.00
A2 2.67 8/3= 2.67
A3 5/3=1.67 4/3= 1.33
A4 1.67 4/3= 1.33
A5 8/3=2.67 8/3= 2.67

Fill in the missing entries. For the missing values of the measured CPE, you can use the values from other versions
that would have the same computational behavior. For the values of the theoretical CPE, you can determine
the number of cycles that would be required for an iteration considering only the latency and issue time of the
multiplier, and then divide by 3.

2

