15-213

“The course that gives CMU its Zip!”’

Debugging
November 9, 2004

Topics
m Defensive programming
m Know your bugs
m Debugging tricks
m Overview of available tools

class2l.ppt

Defensive Programming
5-20 Bugs per 1000 lines of code (InfoWorld, Oct. 2003)
Programmers must anticipate bugs, even if your code is bug-free.

How?

Check for errors at all possible opportunities: detecting bugs early
eases finding the root cause.

Maintain a clean, modular structure with documented interfaces:

goto’s, global variables, long-jumps, clever/obscure macros, etc.
considered harmful dangerous.

m Anticipate common errors: buffer overrun, off-by-one,...
m Consider corner cases: 0/1 loops, empty lists, ...
m Provide debugging support in your program: debugging messages,

data structure checkers (like the Heap-checker from the malloc-lab),
print-function for complicated structures, test-case generators, ...

= Add redundancy
m Maintain test cases for regression testing: use version control

systems (CVS, RCS, BitKeeper, Subversion, ...)

Use all the help you can get: heed compiler warnings, use debuggers,
verifyers, IDE’s, code generators, high-level tools,...
15-213, F'04

Page 1

Assertions

Explicitly state what you expect to be true in your
program: invariants, argument ranges, etc.

Assert-macro (ISO9899, ANSIC): [#include <assert.n>
Generates no tests if “NODEBUG” is defined

#define MAX ARRAY SIZE 10

void foo (double a[], double b[], int n)
{ int i;
double *a ptr = a, *b_ptr = b;
assert(n > 1 && n <= MAX ARRAY SIZE);

for (i = n; --i;) {
7% ooo 9
a_ptr++;
7% ooo 9
b_ptr++;

}

assert (a_ptr == &(a[n]) && b_ptr == &(b[n]));

-3- 15-213, F'04

Assertions (cont.)

Reasons for using assertions:
m Catch failures early
m Verify & document interfaces
m Express invariants to aid debugging

-4 15-213, F'04

Page 2

Debug Messages

Use of cpp-macros and conditional compilation:

#ifdef DEBUG
extern int debug level;
#define DEBUG_PRINT (level, format, args...) \
{ if ((level) < debug_level) 0\
fprintf (stderr, “DEBUG_PRINT line=%d in file='$%s':\n",6\
__LINE__, __FILE_);\
fprintf (stderr, format , ## args);}\
}
#else
#define DEBUG_PRINT (level, format, args...)
#endif

foo(int a, int b) {
DEBUG_PRINT (0, "foo(a=%d, b=%d) started\n", a, b);
}

-5- 15-213, F'04

Add Redundancy

Engineering tradeoff between robustness and
performance.

Extreme case Google:
m Data structures have software maintained checksums

m Distributed system (> 10,000 machines): need fail-stop
characteristic, handle failures at higher level

Simple Cases:

m Count item and compare to pointer difference (see assertion
example)

m Compute simple, inexpensive invariants (for example: the
sum of allocated and free memory objects in the heap ought
to equal the heap size)

-6- 15-213, F'04

Page 3

Integrated Development Environment

Program-editor (with syntax support), version control
system, compiler, debugger, build-system, profiler,
graphical user interface, and integration = IDE

m Microsoft Visual-*
= IBM’s Eclipse project
m Kdevelop (open source)

= Pro: convenience

m Con: often platform dependent
m No silver bullet

15-213, F'04

Debugging History

In 1945 G. Hopper found the first “bug” in IBM’s
Harvard Mark I, an electro-mechanical computer:

i Photo # NH 96566-KN First Computer "Bug”, 1945

e
ot Ondew shakol e {r3me fou o
Jden ul = s, 87 FYE T cnud
e LAY) isiTisesy
By PRO 2 (Bayaows
S ok 3 m;cri} v
R L (Goal embidan h
s i
Ty
et Slgrted Cosine Tape (Sine chesk)
I fidde "TEet.
154y Rak-«-\“ﬁo Cane| F
WeTh)in felay -
s o e 541 Lm.,’ {ndnl\
i

15-213, F'04

Page 4

Early Debugging

Use of front pannel switches & lights:

Other tools included: IBM]| susizy SE0
m Core dumps
m Print statements
m Hardware monitors
m Speakers

-9- 15-213, F'04

Know your Bugs

Common bugs in C-programs
m Pointer bugs
m Dynamic memory allocation / deallocation bugs
m Memory leaks (missing / extra free () calls)
m Buffer overflow bugs
= Arrays out of bound errors (off-by-one)
m Exception handling
m Variable scope problems (see linking lecture)
m Race conditions in multi-threaded codes

Other bugs not considered in this class:
m Specification errors
m Performance bugs

m Program logic errors (bad algorithms, data structures, etc.)
—-10 - 15-213, F'04

Page 5

Encounter with a Bug

Program produces unexpected result and/or crashes
m |Is this behavior reproducible?
m Does it depend on input data?
m Does it change with compilation options? (-g vs. —02)

First goal: narrow the possible code range that could be
responsible for the bug:
m Divide & Conquer
= Simplify the code that shows the bug

m In case of rare/intermittent bugs: try to cause the program to
fail more frequently

m Add logging or debugging printouts to pinpoint the
approximate location of the failure

-1 - 15-213, F'04

GDB (GNU DeBugger)

Basic functionality:
m Can run programs in an observable environment

m Uses ptrace-interface to insert breakpoint, single step,
inspect & change registers and variables

m Does not require compilation with “-g”, but works much
better if it has the symbol tables available

m Maintains source line numbers and can inspect source files

m Ability to attach to a running process
m Ability to watch memory locations
m Conditional breakpoints

m Some graphical user interfaces exist (DDD, KDbg, ...)

-12- 15-213, F'04

Page 6

DDD

Graphical front-end to GDB with extended data
visualization support: http llwww.gnu.org/software/ddd

P2 D0D: /public/source/programming/ddd -3.2/ddd/cxxtest.C 88 DDD: fpublicisourcelprogramming/ddd-3.2.1 iddd/cxxlest.C o E
File Edt View Program Commands Sfatus Source Data Help | File Edit View Program Commands Status Source Data Help
: e e e e — - I o
0 st [0 WG @ 2 el 7 b
e o " Fie Bt View Pbi Sedle Conour e |
s, st s s B s
Displays
T Tist R gEliz=es et =
[—
(List =) 0x804d780 o 0450
= i %m plot_test()
Tist-onext = new List(a global + start+); T S
THetonestonent = new List(a_global + start+) &I X stableaineipiiol;
EChdL i S = list; Bun ==
@ (woid) Vick; /{ Display this Interrupt ' File Edit View Flo
B delete Tist (List *) 0x804dfs0 Step | Stepi T
lelete 1ist—>next; Mext | Nexti &
delete Tist; | e :
P 000 1 or v Doy b5 i X 3
void Tis fon d
et 1f you made a mistaks, ty Edit—Undo. This will undo the most b i
recent debugger conrmand and redispiay the previous program state. || || | ¥
ke
void ref o
L [Prev Tip Next Tip
dele » i
dates
3
. Break.
= B RCTD)
|Eag€g araph display *(11st—nest—nest—>self) dependent on 4 l% fan)
i) | o
5
4 list= (List *) 0xB04dFB0 7 Aol
)
-13 - 15-213, F'04

Annoyingly Frequent Case:

Memory corruption due to an earlier pointer or dynamic
memory allocation error: bug cause and effect are
separated by 1000’s of instructions

m Use GDB to watch the corruption happen:
® Use conditional breakpoints: break ... if cond
e Set a watchpount: [r,a]Jwatch expr

m Use dog-tags in your program
m Use a debugging-version of malloc()
m Use run-time verification tools

-14 - 15-213, F'04

Page 7

Dogtags

GDB style watch points are frequently too slow to be
used in large, complex programs.

#ifdef USE DOG_TAGS struct foobar {
#define DOGTAG (x) int x; DOGTAG (dtl) ;
#else int buf[20];
#define DOGTAG (x) DOGTAG (dt2) ;
#endif };

m If dogtags are enabled, maintain a list of all allocated dogtags
(easier with C++ class objects using the constructor)

m Initialize dogtags to a distinct value (e.g. Oxdeadbeeef)
m Provide function that checks the integrity of the dogtags

® When to call this function?

-15- 15-213, F'04

Dogtags (continued)

Call check funtion near suspect codes by manually
inserting calls or (hack alert):

#ifdef AUTO_WATCH DOG_TAGS

#define if(expr) if (CHECK WATCHED DOG_TAGS, (expr))

#define while(expr) while (CHECK WATCHED DOG_TAGS, (expr))
#define switch (expr) switch (CHECK WATCHED DOG_TAGS, (expr))
#endif /* AUTO_WATCH DOG_TAGS */

-16 - 15-213, F'04

Page 8

Dynamic Memory Allocation Checker

malloc () and friends are a frequent source of trouble
therefore there are numerous debugging aids for this
problem. The typical functionality include:

m Padding the allocated area with dogtags that are checked

when any dynamic memory allocation functions are called or
on demand.

m Checking for invalid free() calls (multiple, with bad argument)
m Checking for access to freed memory regions

m Keeping statistics of the heap utilization

= Logging

-17 - 15-213, F'04

MALLOC_CHECK_

In recent versions of Linux libc (later than 5.4.23) and
GNU libc (2.x), defining MALLOC_CHECK _ causes
extra checks to be enabled (at the expense of lower
speed):

m Checks for multiple free() calls
m Overruns by a single byte

-18 - 15-213, F'04

Page 9

Boehm-Weiser Conservative Garbage
Collector
Ref: http://www.hpl.hp.com/personal/Hans_Boehm/gc/

Idea: forget about free() calls and try to use garbage
collection within C. Has to be conservative.

m Checks for existing pointers to allocated memory regions
m Circular pointers prevent reclaiming

m Assumes that pointers point to first byte (not necessarily
true)

m Assumes that pointers are not constructed on the fly

-19 - 15-213, F'04

Electric Fence, by Bruce Perens

Ref: nttp://sunsite.unc.edu/pub/Linux/devel/lang/c/ElectricFence-2.0.5.tar.gz

Idea: use the virtual memory mechanism to isolate and
protect memory regions
m Pro: very fast — uses hardware (page faults) for the testing
m Con: Fairly large memory overhead due to page-size granularity

m Variations of this idea: Wisconsin Wind-Tunnel project — uses
ECC bits to get finer granularity (highly platform dependent)

-20- 15-213, F'04

Page 10

Run Time Memory Checkers

Very powerful tools that use binary translation
techniques to instrument the program:

m The program (executable or object files) is disassembled and
memory access (or any other operations) are replaced with
code that add extra checking

m Generally results in a 2-50x slow-down, depending on the
level of checking desired

m Can be used for profiling and performance optimizations

-21- 15-213, F'04

Pixie, Atom, 3" Degree, Tracepoint

Originally conceived as tool for computer architecture
research. Started out as instruction level interpreters
then added compilation facilities

m Pixie: MIPS specific

m Shade: Sun specific

m ATOM: Alpha specific
e 3rd Degree used Atom for debugging and verification purposes
e Tracepoint tries (unsuccessfully) to commercialize this tool

-22- 15-213, F'04

Page 11

Valgrind (1A-32, x86 ISA)

Open source software licensed under the GPL (like Linux):
http://valgrind.kde.org/index.html

Valgring is a general purpose binary translation
infrastructure for the 1A-32 instruction set architecture

Tools based on Valgrind include:
m Memcheck detects memory-management problems

m Addrcheck is a lightweight version of Memcheck which does no
uninitialised-value checking

m Cachegrind is a cache profiler. It performs detailed simulation of
the 11, D1 and L2 caches in your CPU

m Helgrind is a thread debugger which finds data races in
multithreaded programs

-23- 15-213, F'04

Memcheck

Uses Valgrind to:
m Use of uninitialised memory
m Reading/writing memory after it has been free'd
m Reading/writing off the end of malloc'd blocks
m Reading/writing inappropriate areas on the stack

m Memory leaks -- where pointers to malloc'd blocks are lost
forever

m Passing of uninitialised and/or unaddressible memory to
system calls

® Mismatched use of malloc/new/new[] vs
free/delete/delete []

m Overlapping src and dst pointers in memcpy () and related
functions

m Some misuses of the POSIX pthreads API

-24- 15-213, F'04

Page 12

KCachegrind

Profiling and cache simulation tool based on Valgrind

Bro oo mEe s 2o oot 3]
fawen] Ixe

‘@FantPrivate: losd
| Types | Gaters | Sauren |

_ 25— 15-213, F'04

Purify

Reed Hastings and Bob Joyce. “Purify: Fast detection
of memory leaks and access errors” In Proc. 1992
Winter USENIX Conference, pages 125--136, 1992

Commercialized by Rational Software, acquired by IBM

m Binary translation based verification system with high level
program development extension (project management)

m Earlier versions used in 15-211 (1997)
m Pro: Very mature, powerful tool
m Con: Costly, limited range of supported platforms

m Commercial competitor: Insure++ from Parasoft

26— 15-213, F'04

Page 13

Profiling

Where is your program spending its CPU time?

Profiling is used to find performance bugs and to fine-
tune program performance.

Principle approaches:
m Compile time instrumentation (gcc —p ...)
m Statistical sampling (DCPI for Alpha based machines)
m Instrumentation via binary translation tools

- 27 - 15-213, F'04

gce —pg ...

Add instrumentation (counters) at function granularity
(calls to mcount ())

[agn@char src]$ gprof driver gmon.out
Flat profile:
Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls ms/call ms/call name
50.03 15.71 15.71 51 308.04 308.04 naive kernel
14.11 20.14 4.43 88358912 0.00 0.00 is_alive
7.58 22.52 2.38 20 119.00 1570.00 run_benchmark
6.02 24.41 1.89 11044258 0.00 0.00 s_bufl_set
5.76 26.22 1.81 11044258 0.00 0.00 s_buf_set
5.67 28.00 1.78 51 34.90 34.90 nofunc8_next generation
3.18 29.00 1.00 11044258 0.00 0.00 naive set
2.29 29.72 0.72 51 14.12 14.12 s_buf kernel
2.10 30.38 0.66 11044258 0.00 0.00 nofunc5_turn on
- 28— 15-213, F'04

Page 14

Debugging an Entire System?

Debugging kernel level code is hard: mistakes generally crash the
system. Real-time constraints prevent seting breakpoint is
places like interrupt handlers or I/O drivers.

Alternatives:

m SimOS (Stanford, http://simos.stanford.edu/) defunct

= Vmware: commercial version of SimOS for virtualizing production
server, running Windows under Linux or vice versa

= Simics: commercial system level simulation for computer
architecture research and system level software development

m User Mode Linux: Run Linux under Linux as a user level process
http://user-mode-linux.sourceforge.net/

m Xen: Hypervisor provides virtualized machine for kernel to run on:
http://www.cl.cam.ac.uk/Research/SRG/netos/xen/index.html

= Denali Isolation Kernel: virtualized machine and special guest OS:
http://denali.cs.washington.edu/pubs/

-29 - 15-213, F'04

User Level Linux

User-Mode Linux is a safe, secure way of running Linux versions and
Linux processes. Run buggy software, experiment with new Linux
kernels or distributions, and poke around in the internals of Linux,

all without risking your main Linux setup.

-30- 15-213, F'04

Page 15

use:” ® telnet 192,166.0.253
i 122.168,0,255,...

Logging in uith HOIE=/
pred-lun.
St Hou 20 19:46:25 -0500 2000 on pes/L fron 192,168.0,254,

e stdin
e stdin is not
e stdin Ls n
Virtial Console 2

1.

-31- 15-213, F'04

Page 16

