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Topics

m Representing Boolean
functions with Binary
Decision Diagrams

m Application to program
verification
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Decision Structures

Truth Table Decision Tree
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m Vertex represents decision

m Follow green (dashed) line for value O

m Follow red (solid) line for value 1

m Function value determined by leaf value.




Variable Ordering

m Assign arbitrary total ordering to variables
® £.0., X; <X,<Xg

m Variables must appear in ascending order along all

paths
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Properties

m No conflicting variable assignments along path
m Simplifies manipulation



Reduction Rule #1

Merge equivalent leaves




Reduction Rule #2

Merge isomorphic nodes
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Reduction Rule #3

Eliminate Redundant Tests




Example OBDD

Initial Graph Reduced Graph
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Canonical representation of Boolean function
O For given variable ordering

m Two functions equivalent if and only if graphs isomorphic
® Can be tested in linear time

m Desirable property: simplest form is canonical.
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Example Functions

Constants

0

1

Unique unsatisfiable function

Unique tautology

Typical Function

B (X, VX)) A X,
m No vertex labeled x,
¢ independent of x,

m Many subgraphs shared

Q

1

Variable

Treat variable
as function

Odd Parity

Linear
representation




More Complex Functions

Functions
m Add 4-bit wordsaand b
m Get 4-bit sum s
m Carry output bit Cout

Shared Representation
m Graph with multiple roots
m 31 nodes for 4-bit adder
m 571 nodes for 64-bit adder
m Linear growth!




Apply Operation

Concept
m Basic technique for building OBDD from Boolean formula.

A op B AopB

Arguments A, B, op Result
= A and B: Boolean Functions = OBDD representing
# Represented as OBDDs composite function
m op: Boolean Operation (e.g., ™, &, |) mAopB
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Apply Execution Example

Argument A Argument B Recursive Calls
A1,B4

/ \
A2,B;
I\

/ AgB> Ag,Bs

/ _
17N /0
AsB, AsB, AsBy
AN
A4,B3 As,By

Optimizations
m Dynamic programming
m Early termination rules
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Apply Result Generation

Recursive Calls Without Reduction With Reduction
A1,B1

/ \
Az,B>
I\

/,’ Ag.B, Ag,Bs
i\
Az,By  A5Br AzBy

I\ / I\

A4,B3 As,By 0 1 0 1

m Recursive calling structure implicitly defines unreduced BDD
m Apply reduction rules bottom-up as return from recursive calls
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Program Verification

int bi1tOr(int x, Int y)
{
return ~(~xX & ~y);
+
Int test bi1tOr(int x, Int y)
{
return x | vy;
by

Do these functions produce
Identical results?

~13-—

Straight-Line Evaluation

X
y

vl ~X

V2 ~Y

v3 vl & v2
v4 ~V3

V5 X |y

t v4d == v5




Symbolic Execution

(3-bit word size)
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Symbolic Execution (cont.)
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v3 = vl & V2 ()
22
1] [ol[z][ollz] [0
v4 = ~v3 Qb
22
ol [21[o][2][0][1
v = X | vy (%)
22
ol [21[o][2][0][1

T v4d == v5

1




Counterexample Generation

Straight-Line Evaluation

iInt b1tOr(int x, Int y)
{ X
return ~(~xX & ~y);
y
+
vl = ~X

int bitXor(int x, iInt y)
{ V2 = -~y

/\ -
return X Y, v3 = vl & V2

}

v = ~v3

Find values of x & y for which V5 =

these programs produce
different results t = v4d ==V
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Symbolic Execution

vd = ~v3 @
22
1Mol [2][o] 2
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Performance: Good

int addXy(int x,
{

return x+y;

}

int y) iInt addyxX{int x, 1nt y)
{

return y+x;

}
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Performance: Bad

int mulXydint x,
{

return x*y;

}

int y)

int mulYXdint x, int y)
{

}

return y*x;
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What if Multiplication were Easy?

int factorK{int x, Int y)
{
INt K = XXXX...X;
Int rangeOK =
1 < X && X <= vy;
int factorOK =
x*y == K;
return
I'(rangeOK && fTactorOK);

int one(int Xx,

{

return 1;

}

int y)

—20-




Evaluation

Strengths
m Provides 100% guarantee of correctness
m Performance very good for Datalab functions

Weaknesses
m Important integer functions have exponential blowup

m Not practical for programs that build and operate on large
data structures
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Some History

Origins
m Lee 1959, Akers 1976
® |dea of representing Boolean function as BDD

m Hopcroft, Fortune, Schmidt 1978
® Recognized that ordered BDDs were like finite state machines
® Polynomial algorithm for equivalence

m Bryant 1986
® Proposed as useful data structure + efficient algorithms

= McMillan 1993
® Developed symbolic model checking
® Method for verifying complex sequential systems

m Bryant 1991
® Proved that multiplication has exponential BDD
® No matter how variables are ordered
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