
15-213
“The course that gives CMU its Zip!”

Verifying Programs with BDDs
Sept. 21, 2004

Verifying Programs with BDDs
Sept. 21, 2004

TopicsTopics
Representing Boolean
functions with Binary
Decision Diagrams
Application to program
verification

15-213, F’04
class07-bdd.ppt

Decision StructuresDecision Structures

Truth Table

– 2 –

Decision Tree

Vertex represents decision
Follow green (dashed) line for value 0
Follow red (solid) line for value 1
Function value determined by leaf value.

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
0
0
1
0
1
0
1

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1
x1 x2 x3 f

Variable OrderingVariable Ordering
Assign arbitrary total ordering to variables

e.g., x1 < x2 < x3

Variables must appear in ascending order along all
paths

OK Not OK

PropertiesProperties
No conflicting variable assignments along path
Simplifies manipulation

x1

x2

x3

x1

x3

x3

x2

x1

x1

x1

– 3 –

Reduction Rule #1Reduction Rule #1

Merge equivalent leaves

aa a

– 4 –

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1

x3 x3

x2

x3

0 1

x3

x2

x1

Reduction Rule #2Reduction Rule #2

Merge isomorphic nodes

y

x

z

x

– 5 –

x3

x2

0 1

x3

x2

x1

y

x

z

x

y

x

z

x

x3 x3

x2

x3

0 1

x3

x2

x1

Reduction Rule #3Reduction Rule #3

Eliminate Redundant Tests

– 6 –

x3

x2

0 1

x3

x2

x1

y

x

y

x2

0 1

x3

x1

Example OBDDExample OBDD

– 7 –

Initial Graph Reduced Graph

Canonical representation of Boolean functionCanonical representation of Boolean function
For given variable ordering

Two functions equivalent if and only if graphs isomorphic
Can be tested in linear time

Desirable property: simplest form is canonical.

x2

0 1

x3

x1 (x1+x2)· x3

0 0

x3

0 1

x3

x2

0 1

x3

0 1

x3

x2

x1

Example FunctionsExample Functions
Constants

Unique unsatisfiable function

Unique tautology1

0

Variable

Treat variable
as function

0 1

x

– 8 –

Typical Function Odd Parity

Linear
representation

x2

x3

x4

10

x4

x3

x2

x1

x2

0 1

x4

x1 (x1 ∨ x2) ∧ x4

No vertex labeled x3

independent of x3

Many subgraphs shared

More Complex FunctionsMore Complex Functions

– 9 –

b3 b3

a3

Cout

b3

b2 b2

a2

b2 b2

a2

b3

a3

S3

b2

b1 b1

a1

b1 b1

a1

b2

a2

S2

b1

a0 a0

b1

a1

S1

b0

10

b0

a0

S0

FunctionsFunctions
Add 4-bit words a and b
Get 4-bit sum s
Carry output bit Cout

Shared RepresentationShared Representation
Graph with multiple roots
31 nodes for 4-bit adder
571 nodes for 64-bit adder
Linear growth!

Apply OperationApply Operation

Arguments Arguments AA, , BB, , opop
AA and BB: Boolean Functions

Represented as OBDDs
op: Boolean Operation (e.g., ^, &, |)

ConceptConcept
Basic technique for building OBDD from Boolean formula.

AA BBopop

ResultResult
OBDD representing
composite function

AA opop BB

A op BA op B

⇒
0

d

c

b

1

a

0

d

c

b

1

a

0 1

d

c

a

b

0

d

1

c

a

|

– 10 –

– 11 –

0 1

d

c

a

B3 B4

B2

B5

B1

A4,B3 A5,B4

A3,B2

A6,B2

A2,B2

A3,B4A5,B2

A6,B5

A1,B1

Recursive CallsArgument A

Operationb

0

d

1

c

a

A4 A5

A3

A2

A6

A1

Apply Execution ExampleApply Execution Example
Argument B

|

OptimizationsOptimizations
Dynamic programming
Early termination rules

0 1

d

c

b

11

c

a

A4,B3 A5,B4

A3,B2

A6,B2

A2,B2

A3,B4A5,B2

A6,B5

A1,B1

Recursive Calls

Apply Result GenerationApply Result Generation

Without Reduction With Reduction

0

d

c

b

1

a

Recursive calling structure implicitly defines unreduced BDD
Apply reduction rules bottom-up as return from recursive calls

– 12 –

Program VerificationProgram Verification
Straight-Line Evaluation

int bitOr(int x, int y)
{

return ~(~x & ~y);
}

y

x

v1 = ~x

v2 = ~y

v3 = v1 & v2

v4 = ~v3

int test_bitOr(int x, int y)
{

return x | y;
}

Do these functions produce Do these functions produce
identical results?

v5 = x | y
identical results?

t = v4 == v5

– 13 –

Symbolic ExecutionSymbolic Execution (3-bit word size)

x x2

10

x1

10

x0

10

y y2

10

y1

10

y0

10

– 14 –

v1 = ~x x2

01

x1

01

x0

01

v2 = ~y y2

01

y1

01

y0

01

Symbolic Execution (cont.)Symbolic Execution (cont.)
v3 = v1 & v2 x2

y2

01

x1

y1

01

x0

y0

01

v4 = ~v3 x2

y2

10

x1

y1

10

x0

y0

10

v5 = x | y x2

y2

10

x1

y1

10

x0

y0

10

– 15 –
t = v4 == v5 1

Counterexample GenerationCounterexample Generation
Straight-Line Evaluation

int bitOr(int x, int y)
{

return ~(~x & ~y);
}

y

x

v1 = ~x

v2 = ~y

v3 = v1 & v2

v4 = ~v3

int bitXor(int x, int y)
{

return x ^ y;
}

Find values of Find values of xx & & yy for which for which
these programs produce these programs produce
different results

v5 = x ^ y

t = v4 == v5different results

– 16 –

Symbolic ExecutionSymbolic Execution

v4 = ~v3 x2

y2

10

x1

y1

10

x0

y0

10

v5 = x ^ y x2

y2

10

y2

x1

y1

10

y1

x0

y0

10

y0

t = v4 == v5

x2

y2

x1

y1

x0

y0

01

x = 111
y = 001

– 17 –

Performance: GoodPerformance: Good
int addXY(int x, int y)
{

return x+y;
}

int addYX(int x, int y)
{

return y+x;
}

0

100

200

300

400

500

600

700

800

900

1000

0 8 16 24 32

Word Size

Se
co

nd
s

Enumerate
BDD

– 18 –

Performance: BadPerformance: Bad
int mulXY(int x, int y)
{

return x*y;
}

int mulYX(int x, int y)
{

return y*x;
}

0

100

200

300

400

500

600

700

800

900

1000

0 8 16 24 32

Word Size

S
ec

on
ds

Enumerate
BDD

– 19 –

What if Multiplication were Easy?What if Multiplication were Easy?

– 20 –

int factorK(int x, int y)
{

int K = XXXX...X;
int rangeOK =

1 < x && x <= y;
int factorOK =

x*y == K;
return

!(rangeOK && factorOK);
}

int one(int x, int y)
{

return 1;
}

EvaluationEvaluation

– 21 –

StrengthsStrengths
Provides 100% guarantee of correctness
Performance very good for Datalab functions

WeaknessesWeaknesses
Important integer functions have exponential blowup
Not practical for programs that build and operate on large
data structures

Some HistorySome History

– 22 –

OriginsOrigins
Lee 1959, Akers 1976

Idea of representing Boolean function as BDD
Hopcroft, Fortune, Schmidt 1978

Recognized that ordered BDDs were like finite state machines
Polynomial algorithm for equivalence

Bryant 1986
Proposed as useful data structure + efficient algorithms

McMillan 1993
Developed symbolic model checking
Method for verifying complex sequential systems

Bryant 1991
Proved that multiplication has exponential BDD
No matter how variables are ordered

	Verifying Programs with BDDsSept. 21, 2004
	Decision Structures
	Variable Ordering
	Reduction Rule #1
	Reduction Rule #2
	Reduction Rule #3
	Example OBDD
	Example Functions
	More Complex Functions
	Apply Operation
	Apply Execution Example
	Apply Result Generation
	Program Verification
	Symbolic Execution
	Symbolic Execution (cont.)
	Counterexample Generation
	Symbolic Execution
	Performance: Good
	Performance: Bad
	What if Multiplication were Easy?
	Evaluation
	Some History

