15-213

“The course that gives CMU its Zip!”

Veritying Programs with BDDs
Sept. 21, 2004

Topics

m Representing Boolean
functions with Binary
Decision Diagrams

m Application to program
verification

class07-bdd.ppt 15-213, F'04



Decision Structures

Truth Table Decision Tree
X]_X&gf
0O 0 O 0
0O 0 1 0
0O 1 O 0
0O 1 1 1
1 0 O 0
1 0 1 1
SHE ] &
1 1 1| 1 / /
ol (2] (o0

m Vertex represents decision

m Follow green (dashed) line for value O

m Follow red (solid) line for value 1

m Function value determined by leaf value.




Variable Ordering

m Assign arbitrary total ordering to variables
® £.0., X; <X,<Xg

m Variables must appear in ascending order along all

paths
OK Not OK
ol® (D
/ / 4 4
(33 (g
EN R O
/ / 4 4
Properties

m No conflicting variable assignments along path
m Simplifies manipulation



Reduction Rule #1

Merge equivalent leaves




Reduction Rule #2

Merge isomorphic nodes

Hogo 8




Reduction Rule #3

Eliminate Redundant Tests




Example OBDD

Initial Graph Reduced Graph

/
/ S\
0

Canonical representation of Boolean function
O For given variable ordering

m Two functions equivalent if and only if graphs isomorphic
® Can be tested in linear time

m Desirable property: simplest form is canonical.

O
/
0




Example Functions

Constants

0

1

Unique unsatisfiable function

Unique tautology

Typical Function

B (X, VX)) A X,
m No vertex labeled x,
¢ independent of x,

m Many subgraphs shared

Q

1

Variable

Treat variable
as function

Odd Parity

Linear
representation




More Complex Functions

Functions
m Add 4-bit wordsaand b
m Get 4-bit sum s
m Carry output bit Cout

Shared Representation
m Graph with multiple roots
m 31 nodes for 4-bit adder
m 571 nodes for 64-bit adder
m Linear growth!




Apply Operation

Concept
m Basic technique for building OBDD from Boolean formula.

A op B AopB

Arguments A, B, op Result
= A and B: Boolean Functions = OBDD representing
# Represented as OBDDs composite function
m op: Boolean Operation (e.g., ™, &, |) mAopB

~10 -



Apply Execution Example

Argument A Argument B Recursive Calls
A1,B4

/ \
A2,B;
I\

/ AgB> Ag,Bs

/ _
17N /0
AsB, AsB, AsBy
AN
A4,B3 As,By

Optimizations
m Dynamic programming
m Early termination rules

11—



Apply Result Generation

Recursive Calls Without Reduction With Reduction
A1,B1

/ \
Az,B>
I\

/,’ Ag.B, Ag,Bs
i\
Az,By  A5Br AzBy

I\ / I\

A4,B3 As,By 0 1 0 1

m Recursive calling structure implicitly defines unreduced BDD
m Apply reduction rules bottom-up as return from recursive calls

- 12 —



Program Verification

int bi1tOr(int x, Int y)
{
return ~(~xX & ~y);
+
Int test bi1tOr(int x, Int y)
{
return x | vy;
by

Do these functions produce
Identical results?

~13-—

Straight-Line Evaluation

X
y

vl ~X

V2 ~Y

v3 vl & v2
v4 ~V3

V5 X |y

t v4d == v5




Symbolic Execution

(3-bit word size)

X

I

&)

— 14—

0

1

0

1

2

S

0

1

0

1

%

1

0

®
&
®

9

1

0




Symbolic Execution (cont.)

— 15—

v3 = vl & V2 ()
22
1] [ol[z][ollz] [0
v4 = ~v3 Qb
22
ol [21[o][2][0][1
v = X | vy (%)
22
ol [21[o][2][0][1

T v4d == v5

1




Counterexample Generation

Straight-Line Evaluation

iInt b1tOr(int x, Int y)
{ X
return ~(~xX & ~y);
y
+
vl = ~X

int bitXor(int x, iInt y)
{ V2 = -~y

/\ -
return X Y, v3 = vl & V2

}

v = ~v3

Find values of x & y for which V5 =

these programs produce
different results t = v4d ==V

—16 —



Symbolic Execution

vd = ~v3 @
22
1Mol [2][o] 2

17—

111
001




Performance: Good

int addXy(int x,
{

return x+y;

}

int y) iInt addyxX{int x, 1nt y)
{

return y+x;

}

1000

900
800
700 -

600
500 -

=#- Enumerate
=—BDD

400
300

Seconds

200
100 - f
0 |

8 16 24 32
Word Size

~18 —



Performance: Bad

int mulXydint x,
{

return x*y;

}

int y)

int mulYXdint x, int y)
{

}

return y*x;

1000
900

800 -

700
600

500

=& Enumerate
——-BDD

400

Seconds

I

300

l

~ 19—

200
100 - f ;
O ol T

8

16
Word Size

24 32




What if Multiplication were Easy?

int factorK{int x, Int y)
{
INt K = XXXX...X;
Int rangeOK =
1 < X && X <= vy;
int factorOK =
x*y == K;
return
I'(rangeOK && fTactorOK);

int one(int Xx,

{

return 1;

}

int y)

—20-




Evaluation

Strengths
m Provides 100% guarantee of correctness
m Performance very good for Datalab functions

Weaknesses
m Important integer functions have exponential blowup

m Not practical for programs that build and operate on large
data structures

—21—



Some History

Origins
m Lee 1959, Akers 1976
® |dea of representing Boolean function as BDD

m Hopcroft, Fortune, Schmidt 1978
® Recognized that ordered BDDs were like finite state machines
® Polynomial algorithm for equivalence

m Bryant 1986
® Proposed as useful data structure + efficient algorithms

= McMillan 1993
® Developed symbolic model checking
® Method for verifying complex sequential systems

m Bryant 1991
® Proved that multiplication has exponential BDD
® No matter how variables are ordered

— 22 —



	Verifying Programs with BDDsSept. 21, 2004
	Decision Structures
	Variable Ordering
	Reduction Rule #1
	Reduction Rule #2
	Reduction Rule #3
	Example OBDD
	Example Functions
	More Complex Functions
	Apply Operation
	Apply Execution Example
	Apply Result Generation
	Program Verification
	Symbolic Execution
	Symbolic Execution (cont.)
	Counterexample Generation
	Symbolic Execution
	Performance: Good
	Performance: Bad
	What if Multiplication were Easy?
	Evaluation
	Some History

